English   李毓龙实验室
[新!]材料与资源
首页
研究员
实验室成员
研究方向
部分发表论文
招聘
实验室活动
如何抵达
GRAB探针常见问题
 

部分发表论文

[主要研究论文 |综述,书评等 |预印本 |合作发表论文 ]

主要研究论文

· Feng, J.*, Dong, H., Lischinsky, J. E., Zhou, J., Deng, F., Zhuang, C., Miao, X., Wang, H., Li, G., Cai, R., Xie, H., Cui, G., Lin, D., & Li, Y.* (2024). Monitoring norepinephrine release in vivo using next-generation GRABNE sensors. Neuron. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2023.06.22.546075

· Deng, F.#, Wan, J.#, Li, G., Dong, H., Xia, X., Wang, Y., Li, X., Zhuang, C., Zheng, Y., Liu, L., Yan, Y., Feng, J., Zhao, Y., Xie, H., & Li, Y.*(2024). Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. Nature Methods. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2023.05.27.542566

· Zhuo, Y.#, Luo, B.#, Yi, X., Dong, H., Miao, X., Wan, J., Williams, J. T., Campbell, M. G., Cai, R., Qian, T., Li, F., Weber, S. J., Wang, L., Li, B., Wei, Y., Li, G., Wang, H., Zheng, Y., Zhao, Y., Wolf, M. E., Zhu, Y., Watabe-Uchida, M., & Li, Y.* (2023). Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo. Nature Methods. [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2023.08.24.554559v1

· Wang, H.#, Qian, T.#, Zhao, Y., Zhuo, Y., Wu, C., Osakada, T., Chen, P., Chen, Z., Ren, H., Yan, Y., Geng, L., Fu, S., Mei, L., Li, G., Wu, L., Jiang, Y., Qian, W., Zhang, L., Peng, W., Xu, M., Hu, J., Jiang, M., Chen, L., Tang, C., Zhu, Y., Lin, D., Zhou, J.-N., & Li, Y.* (2023). A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors. Science , 382(6672), eabq8173. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2022.03.26.485911

· Wu, Z.#, Cui, Y.#, Wang, H.#, Wu, H., Wan, Y., Li, B., Wang, L., Pan, S., Peng, W., Dong, A., Yuan, Z., Jing, M., Xu, M., Luo, M.*, & Li, Y.* (2023). Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proceedings of the National Academy of Sciences, 120(14), e2212387120. [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2020.05.04.075564

· Dong, H.#, Li, M.#, Yan, Y., Qian, T., Lin, Y., Ma, X., Vischer, H. F., Liu, C., Li, G., Wang, H., Leurs, R., & Li, Y.* (2023). Genetically encoded sensors for measuring histamine release both in vitro and in vivo. Neuron. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2022.08.19.504485

· Zeng, J.#*, Li, X.#, Zhang, R., Lv, M., Wang, Y., Tan, K., Xia, X., Wan, J., Jing, M., Zhang, X., Li, Y., Yang, Y., Wang, L., Chu, J., Li, Y., & Li, Y.*. (2023). Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2022.03.27.485970

· Qian, T.#, Wang, H.#, Wang, P.#, Geng, L., Mei, L., Osakada, T., Wang, L., Tang, Y., Kania, A., Grinevich, V., Stoop, R., Lin, D., Luo, M., & Li, Y.* (2023). A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nature Biotechnology. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2022.02.10.480016

· Wu, Z.*, He, K., Chen, Y., Li, H., Pan, S., Li, B., Liu, T., Wang, H., Du, J., Jing, M., & Li, Y.* (2021). A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo Neuron, 110(5), 770-782.e775. [Full Text] [PDF]

* See Comments Highlight by: Umpierre, A. D., Haruwaka, K., & Wu, L.-J.* (2022). Getting a sense of ATP in real time. Neuroscience Bulletin. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2021.02.24.432680

· Dong, A., He, K., Dudok, B., Farrell, J. S., Guan, W., Liput, D. J., Puhl, H. L., Cai, R., Wang, H., Duan, J., Albarran, E., Ding, J., Lovinger, D. M., Li, B., Soltesz, I., & Li, Y.*. (2021). A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nature Biotechnology., [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2020.10.08.329169

· Qian, C., Wu, Z., Sun, R., Yu, H., Zeng, J., Rao, Y., & Li, Y. *. (2021). Localization, proteomics, and metabolite profiling reveal a putative vesicular transporter for UDP-glucose. eLife, https://doi.org/10.7554/eLife.65417. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2020.12.01.405605

· Wan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng,J., Zhang, P., Zhang, Y., Zou, J., Pan, S., Shin, M., Venton, B. J., Zhu, J. J., Jing, M., Xu, M., Li, Y.*.(2021). A genetically encoded sensor for measuring serotonin dynamics. Nature Neuroscience, https://doi.org/10.1038/s41593-021-00823-7. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2020.02.24.962282

· Sun, F.#, Zhou, J.#, Dai, B.#, Qian, T., Zeng, J., Li, X., Zhuo, Y., Zhang, Y., Wang, Y., Qian, C., Tan, K., Feng, J., Dong, H., Lin, D.*, Cui, G.*, & Li, Y.*.(2020). Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nature Methods, https://doi.org/10.1038/s41592-020-00981-9. [Full Text] [PDF]

· Jing, M.*, Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Zou, J. , Trinh, S., Wu, R., Zhang, S., Pan, S., Hires, S., Xu, M., Li, H., Saksida, L. M., Prado, V. F., Bussey, T., Prado, M. A. M., Chen, L., Cheng, H., Li, Y.*.(2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods, 17(11), 1139-1146. [Full Text] [PDF]

· Yu, H., Zhao, T., Liu, S., Wu, Q., Johnson, O., Wu, Z., Zhuang, Z., Shi, Y., He, R., Yang, Y., Sun, J., Wang, X., Xu, H., Zeng, Z., Lei, X., Luo, W.* & Li, Y.*. (2019). MRGPRX4 is a bile acid receptor for human cholestatic itch. eLife, 8, e48431. [Full Text] [PDF]

· Feng, J., Zhang, C., Lischinsky, J. E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z., Wu, H., Chen, W., Zhang, P., Zou, J., Hires, S. A., Zhu, J. J., Cui, G., Lin, D., Du, J. & Li, Y.* (2019). A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron, 102(4), 745-761. [Full Text] [PDF]

· Wu, Z.#, Feng, J.#, Jing, M., & Li, Y.* (2019). G protein-assisted optimization of GPCR-activation based (GRAB) sensors. Neural Imaging and Sensing 2019, vol. 10865, p. 108650N. International Society for Optics and Photonics. [Full Text] [PDF]

· Wu, L., Dong, A., Dong, L., Wang, S. Q., & Li, Y*. (2019). PARIS, an optogenetic method for functionally mapping gap junctions. eLife, 8, e43366. [Full Text] [PDF]

* See Insight by: Kick, D. R., & Schulz, D. J. (2019). Cell Communication: Studying gap junctions with PARIS. eLife, 8, e45207. [Full Text][PDF]

· Sun, F.#, Zeng, J.#, Jing, M.#, Zhou, J., Feng, J., Owen, S., Luo, Y., Li, F., Wang, H., Yamaguchi, T., Yong, Z., Gao, Y., Peng, W., Wang, L., Zhang, S., Du, J., Lin, D., Xu, M., Kreitzer, A. C., Cui, G. & Li, Y.* (2018). A genetically-encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell, 174(2), 481-496. [Full Text] [PDF][Suppl Video 1][Suppl Video 2]

* See Viewpoint by: Beyene, A. G., Delevich, K., Yang, S. J., & Landry, M. P. (2018). New optical probes bring dopamine to light. Biochemistry, 6379-6381. [Full Text][PDF]

· Jing, M.#, Zhang, P.#, Wang, G., Feng, J., Mesik, L., Zeng, J., Jiang, H., Wang, S., Looby, J. C., Guagliardo, N. A., Langma, L. W., Lu, J., Zuo, Y., Talmage, D. A., Role, L. W., Barrett, P. Q., Zhang, L. I., Luo, M., Song, Y., Zhu, JJ* & Li, Y*. (2018). A genetically-encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nature Biotechnology, 36(8), 726-737. [Full Text] [PDF][Suppl Figs][Suppl Videos]

* See Research Highlight by: Vogt, N. (2018). Detecting acetylcholine. Nature methods, 15(9), 648. [Full Text][PDF]

· Li, Y.*, & Tsien, R. W.* (2012). pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nature neuroscience, 15(7), 1047-1053. [Full Text] [PDF]

· Li, Y., Augustine, G. J., & Weninger, K.* (2007). Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. Biophysical journal, 93(6), 2178-2187. [Full Text] [PDF]

综述,书评等

· Zhao, Y., Wan, J., & Li, Y.* (2024). Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression. Journal of Neurochemistry. [Full Text] [PDF]

· Zheng, Y., & Li, Y.* (2023). Past, Present, and Future of Tools for Dopamine Detection. Neuroscience, 525, 13-25. [Full Text] [PDF]

· Qian, T., Wang, H., Xia, X., & Li, Y.* (2023) Current and emerging methods for probing neuropeptide transmission.  Current Opinion in Neurobiology, 81, 102751. [Full Text] [PDF]

· Dong, C.#, Zheng, Y.#, Long-Iyer, K., Wright, E. C., Li, Y.*, & Tian, L.* (2022). Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. Annual Review of Neuroscience. [Full Text] [PDF]

· Wu, Z., Lin, D., & Li, Y.* (2022). Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators.  Nature Reviews Neuroscience. [Full Text] [PDF]

· Zhuo, Y., Li, Y.* (2022). New imaging methods for monitoring dopaminergic neurotransmission.  Science China Life Sciences, 65. [Full Text] [PDF]

· Yulong Li. (2021). Neuron, 109(21), 3346-3348. [Full Text] [PDF]

· Yu, H., Wangensteen, K., Deng, T., Li, Y., & Luo, W.* (2021). MRGPRX4 in Cholestatic Pruritus.  Semin Liver Dis41(03), 358-367. [Full Text] [PDF]

· Wan, J. & Li, Y.* (2020). Recent advances in detection methods for neurotransmitters. Chinese Journal of Analytical Chemistry, 48(3), 307-315. (In Chinese) [Full Text] [PDF]

· Wu, Z.* & Li, Y.* (2020). New frontiers in probing the dynamics of purinergic transmitters in vivo. Neuroscience Research, https://doi.org/10.1016/j.neures.2020.01.008. [Full Text] [PDF]

· Zeng, J., Sun, F., Wan, J., Feng, J. & Li, Y.* (2019). New optical methods for detecting monoamine neuromodulators. Current Opinion in Biomedical Engineering, https://doi.org/10.1016/j.cobme.2019.09.010. [Full Text] [PDF]

· Jing, M., Zhang, Y., Wang, H. & Li, Y.* (2019). GPCR‐based sensors for imaging neurochemicals with high sensitivity and specificity. Journal of Neurochemistry, https://doi.org/10.1111/jnc.14855. [Full Text] [PDF]

· Dong, A.*, Liu, S., & Li, Y.* (2018). Gap junctions in the nervous system: probing functional connections using new imaging approaches. Frontiers in Cellular Neuroscience, 12, 320. [Full Text] [PDF]

· Wang, H., Jing, M., & Li, Y.* (2018). Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Current Opinion in Neurobiology, 50, 171-178. [Full Text] [PDF]

· Wang, A.#, Feng, J.#, Li, Y.*, & Zou, P.* (2018). Beyond fluorescent proteins: hybrid and bioluminescent indicators for imaging neural activities. ACS chemical neuroscience, 9(4), 639-650. [Full Text] [PDF]

· Qian, C., & Li, Y.* (2015). Spine maturation and pruning during development: Cadherin/Catenin complexes come to help. Science China. Life sciences,58(9), 929. [Full Text] [PDF]

· Li, Y.*, & Rao, Y.* (2015). Pied piper of neuroscience. Cell, 163(2), 267-268. [Full Text] [PDF]

预印本

· Lv, M., Cai, R., Zhang, R., Xia, X., Li, X., Wang, Y., Wang, H., Zeng, J., Xue, Y., Mao, L., & Li, Y.* (2024). An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning. bioRxiv, 2024.2003.2009.584200. [Full Text] [PDF]

· Umpierre, A.#*, Li, B.#, Ayasoufi, K., Zhao, S., Xie, M., Thyen, G., Hur, B., Zheng, J, Liang, Y., Wu, Z., Yu, X., Sung, J., Johnson, A., Li, Y.*, & Wu, L.* (2023). Microglial P2Y6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. bioRxiv, 2023.2006.2012.544691. [Full Text] [PDF]

· Hatashita, Y., Wu, Z., Fujita, H., Kumamoto, T., Livet, J., Li, Y., Tanifuji, M., & Inoue, T.* (2022). Spontaneous and multifaceted ATP release from astrocytes at the scale of hundreds of synapses. bioRxiv, 2022.2012.2005.519082. [Full Text] [PDF]

· Basu, A., Yang, J.-H., Yu, A., Glaeser-Khan, S., Feng, J., Krystal, J. H., Li, Y., & Kaye, A. P.* (2022). Prefrontal norepinephrine represents a threat prediction error under uncertainty. bioRxiv, 2022.2010.2013.511463. [Full Text] [PDF]

· Gyawali, U., Martin, D. A., Sun, F.,Li, Y., & Calu, D. J.* (2022). Dopamine in the Dorsal Bed Nucleus of Stria Terminalis signals Pavlovian sign-tracking and reward violations. bioRxiv, 2022.2006.2021.497039. [Full Text] [PDF]

· Singh, S., Sarroza, D., English, A., Whittington, D., Dong, A., van der Stelt, M., Li, Y., Zweifel, L., Bruchas, M. R., Land, B. B., & Stella, N.* (2022). ABHD6 selectively controls metabotropic-dependent increases in 2-AG production. bioRxiv, 2022.2005.2018.492553. [Full Text] [PDF]

· Jiang, P.*, Kemper, K. M., Chang, K.-T., Qian, C., Li, Y., Guan, L., van Hasselt, P., Caradonna, S. J., & Strich, R. (2022). An in situ cut-and-paste genome editing platform mediated by CRISPR/Cas9 or Cas12a. bioRxiv, 2022.2003.2030.486486. [Full Text] [PDF]

· Mayer, F. P.#*, Niello, M.#, Cintulova, D., Sideromenos, S., Maier, J., Li, Y., Bulling, S., Kudlacek, O., Schicker, K., Iwamoto, H., Deng, F., Wan, J., Holy, M., Katamish, R., Sandtner, W., Li, Y., Pollak, D., Blakely, R. D., Mihovilovic, M., Baumann, M. H., & Sitte, H. H.* (2022). Serotonin-releasing agents with reduced off-target effects. Research Square. [Full Text] [PDF]

· Zou, J., Trinh, S., Erskine, A., Jing, M., Yao, J., Walker, S., Li, Y.., & Hires, S. A.* (2021). Directed motor actions and choice signalling drive cortical acetylcholine dynamics. bioRxiv,, 2021.2012.2021.473699. [Full Text] [PDF]

· Sturgill, J. F., Hegedus, P., Li, S. J., Chevy, Q, Siebels, A., Jing, M., Li, Y., Hangya, B.* & Kepecs, A.*(2020). Basal forebrain-derived acetylcholine encodes valence-free reinforcement prediction error. bioRxiv, 2020.02.17.953141. [Full Text] [PDF]

合作发表论文

· Zhang, Y.#, Karadas, M.#, Liu, J., Gu, X., Vöröslakos, M., Li, Y., Tsien, R. W., & Buzsáki, G.* (2024). Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron, S0896-6273(24)00154-5. [Full Text] [PDF]

· Dudok, B.#*, Fan, L. Z.#, Farrell, J. S., Malhotra, S., Homidan, J., Kim, D. K., Wenardy, C., Ramakrishnan, C., Li, Y., Deisseroth, K., & Soltesz, I. (2024). Retrograde endocannabinoid signaling at inhibitory synapses in vivo. Science, 383(6686), 967-970. [Full Text] [PDF]

· Zhou, X.#, He, Y.#, Xu, T.#, Wu, Z.#, Guo, W., Xu, X., Liu, Y., Zhang, Y., Shang, H., Huang, L., Yao, Z., Li, Z., Su, L., Li, Z., Feng, T., Zhang, S., Monteiro, O., Cunha, R. A., Huang, Z.-L., Zhang, K.*, Li, Y., Cai, X.*, Qu, J.*, & Chen, J.-F.* (2024). 40 Hz light flickering promotes sleep through cortical adenosine signaling. Cell Research.. [Full Text] [PDF]

· Singh, S., Sarroza, D., English, A., McGrory, M., Dong, A., Zweifel, L., Land, B. B., Li, Y., Bruchas, M. R., & Stella, N.* (2023). Pharmacological Characterization of the Endocannabinoid Sensor GRABeCB2.0. Cannabis and Cannabinoid Research.. [Full Text] [PDF]

· Sang, D.#, Lin, K.#, Yang, Y.#, Ran, G., Li, B., Chen, C., Li, Q., Ma, Y., Lu, L., Cui, X.-Y., Liu, Z., Lv, S.-Q., Luo, M., Liu, Q., Li, Y., & Zhang, E. E.* (2023). Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell, 186(25), 5500-5516.e5521. [Full Text] [PDF]

· Liao, Y.#, Wen, R.#, Fu, S., Cheng, X., Ren, S., Lu, M., Qian, L., Luo, F., Wang, Y., Xiao, Q., Wang, X., Ye, H., Zhang, X., Jiang, C., Li, X., Li, S., Dang, R., Liu, Y., Kang, J., Yao, Z., Yan, J., Xiong, J., Wang, Y., Wu, S., Chen, X., Li, Y., Xia, J.*, Hu, Z.*, & He, C.* (2023) Spatial memory requires hypocretins to elevate medial entorhinal gamma oscillations. Neuron. . [Full Text] [PDF]

· Dong, Y., Li, Y., Xiang, X., Xiao, Z. C., Hu, J., Li, Y., Li, H., & Hu, H.* (2023). Stress relief as a natural resilience mechanism against depression-like behaviors. Neuron. [Full Text] [PDF]

· Kondev, V., Najeed, M., Yasmin, F., Morgan, A., Loomba, N., Johnson, K., Adank, D. N., Dong, A., Delpire, E., Li, Y., Winder, D., Grueter, B. A., & Patel, S.* (2023). Endocannabinoid release at ventral hippocampal-amygdala synapses regulates stress-induced behavioral adaptation. Cell Reports, 113027. [Full Text] [PDF]

· Hasegawa, E., Li, Y., & Sakurai, T.* (2023). Regulation of REM sleep in mice: The role of dopamine and serotonin function in the basolateral amygdala. Neuroscience Research. [Full Text] [PDF]

· Gunduz-Cinar, O., Castillo, L. I., Xia, M., Van Leer, E., Brockway, E. T., Pollack, G. A., Yasmin, F., Bukalo, O., Limoges, A., Oreizi-Esfahani, S., Kondev, V., Báldi, R., Dong, A., Harvey-White, J., Cinar, R., Kunos, G., Li, Y., Zweifel, L. S., Patel, S., & Holmes, A. (2023). A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron.. [Full Text] [PDF]

· Terauchi, A., Yee, P., Johnson-Venkatesh, E. M., Seiglie, M. P., Kim, L., Pitino, J. C., Kritzer, E., Zhang, Q., Zhou, J., Li, Y., Ginty, D. D., Lee, W. A., & Umemori, H.* (2023). The projection-specific signals that establish functionally segregated dopaminergic synapses. Cell. [Full Text] [PDF]

· Ceddia, R. P.#, Zurawski, Z.#, Thompson Gray, A., Adegboye, F., McDonald-Boyer, A., Shi, F., Liu, D., Maldonado, J., Feng, J., Li, Y., Alford, S., Ayala, J. E., McGuinness, O. P., Collins, S., & Hamm, H. E.* (2023). Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. The Journal of Clinical Investigation. [Full Text] [PDF]

· Krok, A. C., Maltese, M., Mistry, P., Miao, X., Li, Y., & Tritsch, N. X.* (2023). Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature. [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2022.09.09.507300

· Kimchi, E.*, Burgos-Robles, A., Matthews, G., Chakoma, T., Patarino, M., Weddington, J., Siciliano, C., Yang, W., Foutch, S., Simons, R., Fong, M., Jing, M., Li, Y., Polley, D., Tye, K.* (2023). Reward contingency gates selective cholinergic suppression of amygdala neurons. eLife, 12:RP89093 [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2022.02.04.479188v2

· Zhou, B.#, Fan, K.#, Guo, J.#, Feng, J., Yang, C., Li, Y., Shi, S., & Kong, L. (2023). Plug-and-play fiber-optic sensors based on engineered cells for neurochemical monitoring at high specificity in freely moving animals. Science Advances, 9(22), eadg0218. [Full Text] [PDF]

· Albarran, E., Sun, Y., Liu, Y., Raju, K., Dong, A., Li, Y., Wang, S., Südhof, T. C.*, & Ding, J. B.* (2023). Postsynaptic synucleins mediate endocannabinoid signaling. Nature Neuroscience, 26(6), 997-1007. [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2021.10.04.462870v1

· Patton, A. P.*, Morris, E. L., McManus, D., Wang, H., Li, Y., Chin, J. W., & Hastings, M. H.* (2023). Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proceedings of the National Academy of Sciences , 120(21), e2301330120. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2023.01.16.523253

· Peng, W.*, Liu, X., Ma, G., Wu, Z., Wang, Z., Fei, X., Qin, M., Wang, L., Li, Y., Zhang, S.*, & Xu, M.* (2023). Adenosine-independent regulation of the sleep–wake cycle by astrocyte activity. Cell Discovery, 9(1), 16. [Full Text] [PDF]

· Asher, M. J., McMullan, H. M., Dong, A., Li, Y., & Thayer, S. A.* (2023) A Complete Endocannabinoid Signaling System Modulates Synaptic Transmission between Human Induced Pluripotent Stem Cell-Derived Neurons. Mol Pharmacol , 103(2), 100-112. [Full Text] [PDF]

· Natsubori, A.*, Hirai, S., Kwon, S., Ono, D., Deng, F., Wan, J., Miyazawa, M., Kojima, T., Okado, H., Karashima, A., Li, Y., Tanaka, K. F., & Honda, M. (2023). Serotonergic neurons control cortical neuronal intracellular energy dynamics by modulating astrocyte-neuron lactate shuttle. iScience, 105830. [Full Text] [PDF]

· Ono, D.*, Wang, H., Hung, C. J., Wang, H.-t., Kon, N., Yamanaka, A.,Li, Y., & Sugiyama, T. Network-driven intracellular cAMP coordinates circadian rhythm in the suprachiasmatic nucleus. Science Advances, 9(1), eabq7032. [Full Text] [PDF]

· Reggiani, J. D. S., Jiang, Q., Barbini, M., Lutas, A., Liang, L., Fernando, J., Deng, F., Wan, J., Li, Y., Chen, C.*, & Andermann, M. L.* (2022). Brainstem serotonin neurons selectively gate retinal information flow to thalamus. Neuron. [Full Text] [PDF]

· Pittolo, S., Yokoyama, S., Willoughby, D. D., Taylor, C. R., Reitman, M. E., Tse, V., Wu, Z., Etchenique, R., Li, Y., & Poskanzer, K. E.* (2022). Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Reports, 40(13), 111426. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2022.07.19.500710

· Li, X.#, Li, Y.#, Zhou, Y., Wu, J., Zhao, Z., Fan, J., Deng, F., Wu, Z., Xiao, G., He, J., Zhang, Y., Zhang, G., Hu, X., Chen, X., Zhang, Y., Qiao, H., Xie, H., Li, Y., Wang, H.*, Fang, L.*, & Dai, Q.* (2022). Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nature Biotechnology. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2022.03.14.484230

· Lohani, S.#, Moberly, A. H.#, Benisty, H., Landa, B., Jing, M., Li, Y., Higley, M. J.*, & Cardin, J. A.* (2022). Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nature Neuroscience, 25(12), 1706-1713. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2020.12.09.418632

· Wang, L.#, Wu, C.#, Peng, W., Zhou, Z., Zeng, J., Li, X., Yang, Y., Yu, S., Zou, Y., Huang, M., Liu, C., Chen, Y., Li, Y., Ti, P., Liu, W., Gao, Y., Zheng, W., Zhong, H., Gao, S., Lu, Z., Ren, P.-G., Ng, H. L., He, J., Chen, S., Xu, M., Li, Y., & Chu, J.* (2022). A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging. Nature Communications, 13(1), 5363. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2022.02.27.482140

· Sheu, S.-H.*, Upadhyayula, S., Dupuy, V., Pang, S., Deng, F., Wan, J., Walpita, D., Pasolli, H. A., Houser, J., Sanchez-Martinez, S., Brauchi, S. E., Banala, S., Freeman, M., Xu, C. S., Kirchhausen, T., Hess, H. F., Lavis, L., Li, Y., Chaumont-Dubel, S., & Clapham, D. E.* (2022). A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility. Cell, 185(18), 3390-3407.e3318. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2021.09.27.461878

* See Preview by: Simon, D. J., & Levitz, J. (2022). A ciliary synapse for “short-circuit” neuromodulation. Cell , 185(18), 3284-3286. [Full Text] [PDF]

· Dai, B.*, Sun, F., Tong, X., Ding, Y., Kuang, A., Osakada, T., Li, Y., & Lin, D.* (2022). Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Reports, 40(8), 111246. [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2021.06.22.449478v1

· Lin, R.*#, Zhou, Y.#, Yan, T.#, Wang, R.#, Li, H., Wu, Z., Zhang, X., Zhou, X., Zhao, F., Zhang, L., Li, Y., & Luo, M.* (2022). Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat Methods, 19(8), 976-985. [Full Text] [PDF]

· Li, H.#, Namburi, P.#, Olson, J. M.#, Borio, M., Lemieux, M. E., Beyeler, A., Calhoon, G. G., Hitora-Imamura, N., Coley, A. A., Libster, A., Bal, A., Jin, X., Wang, H., Jia, C., Choudhury, S. R., Shi, X., Felix-Ortiz, A. C., de la Fuente, V., Barth, V. P., King, H. O., Izadmehr, E. M., Revanna, J. S., Batra, K., Fischer, K. B., Keyes, L. R., Padilla-Coreano, N., Siciliano, C. A., McCullough, K. M., Wichmann, R., Ressler, K. J., Fiete, I. R., Zhang, F., Li, Y., & Tye, K. M.* (2022). Neurotensin orchestrates valence assignment in the amygdala. Nature. [Full Text] [PDF]

· Mo, J.#, Chen, J.#, Shi, Y., Sun, J., Wu, Y., Liu, T., Zhang, J., Zheng, Y., Li, Y., & Chen, Z.* (2022). Third-Generation Covalent TMP-Tag for Fast Labeling and Multiplexed Imaging of Cellular Proteins Angewandte Chemie International Edition, e202207905. [Full Text] [PDF]

· Yu, X.#*, Zhao, G.#, Wang, D., Wang, S., Li, R., Li, A., Wang, H., Nollet, M., Chun, Y. Y., Zhao, T., Yustos, R., Li, H., Zhao, J., Li, J., Cai, M., Vyssotski, A. L., ,Li, Y., Dong, H.*, Franks, N. P.*, & Wisden, W.* (2022). A specific circuit in the midbrain detects stress and induces restorative sleep. Science, 377(6601), 63-72. [Full Text] [PDF]

· Kjaerby, C.*, Andersen, M., Hauglund, N., Untiet, V., Dall, C., Sigurdsson, B., Ding, F., Feng, J., Li, Y., Weikop, P., Hirase, H., & Nedergaard, M.* (2022). Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nature Neuroscience. [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2020.09.01.274977v1

* See Comments Highlight by: Morici, J. F., & Girardeau, G.* (2022). Cortical norepinephrine GRABs a seat at the sleep table. Nature Neuroscience, 25(8), 978-980. [Full Text] [PDF]

· Han, J., Yoon, J., Shin, J., Nam, E., Qian, T.,Li, Y., Park, K.*, Lee, S.-H.*, & Lim, M. H.* (2022). Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β. Nature Chemistry. [Full Text] [PDF]

See also ChemRxiv https://doi.org/10.26434/chemrxiv.14736882

· Klein Herenbrink, C.#, Støier, J. F.#, Reith, W. D., Dagra, A., Gregorek, M. A. C., Cola, R. B., Patriarchi, T., Li, Y., Tian, L., Gether, U., & Herborg, F.* (2022). Multimodal detection of dopamine by sniffer cells expressing genetically encoded fluorescent sensors. Communications Biology, 5(1), 578. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2021.09.16.460471

· Breton-Provencher, V.#*, Drummond, G. T.#, Feng, J., Li, Y., & Sur, M.* (2022). Spatiotemporal dynamics of noradrenaline during learned behaviour. Nature [Full Text] [PDF]

· Koh, W., Park, M., Chun, Y. E., Lee, J., Shim, H. S., Park, M. G., Kim, S., Sa, M., Joo, J., Kang, H., Oh, S.-J., Woo, J., Chun, H., Lee, S. E., Hong, J., Feng, J., Li, Y., Ryu, H., Cho, J., & Lee, C. J. (2021). Astrocytes Render Memory Flexible by Releasing D-Serine and Regulating NMDA Receptor Tone in the Hippocampus. Biological Psychiatry, 91(8), 740-752. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2021.03.25.436945

· Stahl, A., Noyes, N. C., Boto, T., Botero, V., Broyles, C. N., Jing, M., Zeng, J., King, L. B., Li, Y., Davis, R. L., & Tomchik, S. M.* (2022). Associative learning drives longitudinally graded presynaptic plasticity of neurotransmitter release along axonal compartments. eLife, 11. [Full Text] [PDF]

See also BioRxiv https://doi.org/10.1101/2021.06.08.447536

· Liu, C.*, Cai, X., Ritzau-Jost, A., Kramer Paul, F., Li, Y.., Khaliq Zayd, M., Hallermann, S., & Kaeser Pascal, S.* (2022). An action potential initiation mechanism in distal axons for the control of dopamine release. Science, 375(6587), 1378-1385. [Full Text] [PDF]

* See Comments Highlight by: Wiseman, S. (2022). Dopamine surprises. Nature Neuroscience, 25(5), 531-531. [Full Text] [PDF]

· Hasegawa, E., Miyasaka, A., Sakurai, K., Cherasse, Y., Li, Y.., & Sakurai, T.* (2022) Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science, 375(6584), 994-1000. [Full Text] [PDF]

· Liput, D. J., Puhl, H. L., Dong, A., He, K., Li, Y., & Lovinger, D. M. (2022). 2-Arachidonoylglycerol mobilization following brief synaptic stimulation in the dorsal lateral striatum requires glutamatergic and cholinergic neurotransmission. Neuropharmacology, 205, 108916. [Full Text] [PDF]

· Deng, H.*, Xiao, X., Yang, T., Ritola, K., Hantman, A., Li, Y., Huang, Z. J., & Li, B.* (2021). A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell, 184(26), 6344-6360.e6318. [Full Text] [PDF]

· Hamilos, A. E., Spedicato, G., Hong, Y., Sun, F., Li, Y., & Assad, J. (2021). Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. eLife,, 10, e62583. [Full Text] [PDF]
See also BioRxiv: https://www.biorxiv.org/content/10.1101/2020.05.13.094904v2

· Lu, C.-L.#, Ren, J.#, Mo, J.-W., Fan, J., Guo, F., Chen, L.-Y., Wen, Y.-L., Li, S.-J., Fang, Y.-Y., Wu, Z.-F., Li, Y., Gao, T.-M., & Cao, X.*(2021) Glucocorticoid receptor-dependent astrocytes mediate stress vulnerability. Biological Psychiatry, 12(1), 6403. [Full Text] [PDF]

· Gallo, E. F.*, Greenwald, J., Yeisley, J., Teboul, E., Martyniuk, K. M., Villarin, Jing, M., Li, Y., Javitch, J. A., Balsam, P. D., & Kellendonk, C*. (2022). Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Mol Psychiatry, 27(3), 1502-1514. [Full Text] [PDF]

See also BioRxiv https://www.biorxiv.org/content/10.1101/2020.09.07.284612

· Robert, B., Kimchi, E. Y., Watanabe, Y., Chakoma, T., Jing, M., Li, Y., & Polley, D. B. (2021). A functional topography within the cholinergic basal forebrain for encoding sensory cues and behavioral reinforcement outcomes. eLife, 10, e69514. [Full Text] [PDF]
See also BioRxiv https://doi.org/10.1101/2021.04.16.439895

· Guo, W.#, Fan, S.#, Xiao, D., Dong, H., Xu, G., Wan, Z., Ma, Y., Wang, Z., Xue, T., Zhou, Y., Li, Y., & Xiong, W.* (2021). A Brainstem reticulotegmental neural ensemble drives acoustic startle reflexes. Nature Communications, 12(1), 6403. [Full Text] [PDF]

· Foo, C., Lozada, A., Aljadeff, J., Li, Y., Wang, J. W., Slesinger, P. A.*, & Kleinfeld, D.* (2021). Reinforcement learning links spontaneous cortical dopamine impulses to reward. Current Biology, 31(18), 4111-4119.e4114. [Full Text] [PDF]

· Li, Y., Simmler Linda, D., Van Zessen, R., Flakowski, J., Wan, J.-X., Deng, F., Li, Y.-L., Nautiyal Katherine, M., Pascoli, V., & Lüscher, C.* (2021) Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science, 73(6560), 1252-1256. [Full Text] [PDF]

· Al-Hasani, R.#*, Gowrishankar, R.#, Schmitz, G. P.#, Pedersen, C. E., Marcus, D. J., Shirley, S. E., Hobbs, T. E., Elerding, A. J., Renaud, S. J., Jing, M., Li, Y., Alvarez, V. A., Lemos, J. C., & Bruchas, M. R*. (2021). Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nature Neuroscience, 24, 1414–1428 [Full Text] [PDF]

· Farrell, J. S.*, Colangeli, R., Dong, A., George, A. G., Addo-Osafo, K., Kingsley, P. J., Morena, M., Wolff, M. D., Dudok, B., He, K., Patrick, T. A., Sharkey, K. A., Patel, S., Marnett, L. J., Hill, M. N., Li, Y., Teskey, G. C., & Soltesz, I. (2021). In vivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron,, 109(15), 2398-2403.e2394. [Full Text] [PDF]

· Huang, M.#, Li, D.#*, Pei, Q.#, Xie, Z., Gu, H., Zhang, X., Chen, Z., Liu, A., Wang, Y., Sun, F., Li, Y., Zhang, J., He, M., Xie, Y., Zhang, F., Qi, X., Shang, C.*, & Cao, P.*(2021). The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice Nature Communications, 12, 4409. [Full Text] [PDF]
See also BioRxiv https://doi.org/10.1101/2020.11.23.395004.

· Wang, Q.#, Kong, Y.#, Wu, D., Liu, J., Jie, W., You, Q., Huang, L., Hu, J., Chu, H., Gao, F., Hu, N., Luo, Z., Li, X., Li, S., Wu, Z., Li, Y., Yang, J.*, & Gao, T.* (2021). Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nature Communications, 12(1), 3321. [Full Text] [PDF]

· Pribiag, H., Shin, S., Wang, E. H., Sun, F., Datta, P., Okamoto, A., Guss, H., Jain, A., Wang, X. Y., De Freitas, B., Honma, P., Pate, S., Lilascharoen, V., Li, Y., & Lim, B. K.* (2021). Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking. Neuron, https://doi.org/10.1016/j.neuron.2021.05.002 [Full Text] [PDF]

· Zhang, Y.#, Cao, L.#, Varga, V., Jing, M., Karadas, M., Li, Y., & Buzsáki, G.* (2021). Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proceedings of the National Academy of Sciences, 118(15), e2016432118. https://doi.org/10.1073/pnas.2016432118. [Full Text] [PDF]

· Bai, J., Guo, F., Li, M., Li, Y.*, & Lei, X.* (2021). Click-based amplification: designed to facilitate various target labelling with ultralow background. RSC Chemical Biology, https://doi.org/10.1039/D1CB00002K. [Full Text] [PDF]

· Zeng, Y.#, Luo, H.#, Gao, Z., Zhu, X., Shen, Y., Li, Y., Hu, J.*, & Yang, J.* (2021). Reduction of prefrontal purinergic signaling is necessary for the analgesic effect of morphine. iScience,24(3), 102213. https://doi.org/https://doi.org/10.1016/j.isci.2021.102213. [Full Text] [PDF]

· Sethuramanujam, S.#, Matsumoto, A.#, deRosenroll, G., Murphy-Baum, B., McIntosh, J. M., Jing, M., Li, Y., Berson, D., Yonehara, K.*, & Awatramani, G. B.* (2021). Rapid multi-directed cholinergic transmission in the central nervous system. Nature Communications, https://doi.org/10.1038/s41467-021-21680-9. [Full Text] [PDF]
See also BioRxiv https://doi.org/10.1101/2020.04.18.048330.

· Wang, J.#, Li, J.#, Yang, Q.#, Xie, Y.-K., Wen, Y.-L., Xu, Z.-Z., Li, Y., Xu, T., Wu, Z.-Y., Duan, S., & Xu, H.* (2021). Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons. Proceedings of the National Academy of Sciences,118(7), e2019295118. https://doi.org/10.1073/pnas.2019295118. [Full Text] [PDF]

· Song, Y., Xu, C., Liu, J., Li, Y., Wang, H., Shan, D., Wainer Irving, W., Hu, X., Zhang, Y.*, Woo Anthony, Y.-H.*, & Xiao, R.-P. Heterodimerization with 5-HT2BR Is Indispensable for β2AR-mediated Cardioprotection. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.120.317011. [Full Text] [PDF]

· Zhu, R.#, Zhang, G.#, Jing, M., Han, Y., Li, J., Zhao, J., Li, Y., & Chen, P. R.* (2021, 2021/01/25). Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction. Nature Communications,,12(1), 581. https://doi.org/10.1038/s41467-020-20754-4. [Full Text] [PDF]

· Mayer, F. P., Iwamoto, H., Hahn, M. K., Grumbar, G. J., Stewart, A., Li, Y., & Blakely, R. D.* (2021). There's no place like home? Return to the home cage triggers dopamine release in the mouse nucleus accumbens. Neurochemistry International, 142, 104894. https://doi.org/https://doi.org/10.1016/j.neuint.2020.104894. [Full Text] [PDF]

· Bari*, A., Xu, S., Pignatelli, M., Takeuchi, D., Feng, J., Li, Y., & Tonegawa, S.* (2020). Differential attentional control mechanisms by two distinct noradrenergic coeruleo-frontal cortical pathways. Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.2015635117. [Full Text] [PDF]

· Kim, H. R.*, Malik, A. N., Mikhael, J. G., Bech, P., Tsutsui-Kimura, I., Sun, F., Zhang, Y., Li, Y., Watabe-Uchida, M., Gershman, S. J., & Uchida, N.* (2020). A Unified Framework for Dopamine Signals across Timescales. Cell, https://doi.org/https://doi.org/10.1016/j.cell.2020.11.013. [Full Text] [PDF]

· Crouse,R. B., Kim, K., Batchelor, H. M., Kamaletdinova, R., Chan, J., Rajebhosale, P., Pittenger, S. T., Role, L. W., Talmage, D A., Jing, M. , Li, Y., Gao, X., Mineur , Y. S., & Picciotto, M. R. * (2020). Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances learning of cue-reward contingency. eLife, 9:e57335. [Full Text] [PDF]

· Kwak, H., Koh, W., Kim, S., Song, K., Shin, J., Lee, J. M., Lee, E. H., Bae, J. Y., Ha, G. E., Oh, J. Park, Y. M., Kim, S., Feng, J., Lee, S. E., Choi, J. W., Kim, K. H., Kim, Y. S., Woo, J., Lee, D., Son, T., Kwon, S. W., Park, K. D., Yoon, B. Lee, J., Li, Y. , Lee, H., Bae, Y. C., Lee, C. J.* & Cheong, E.* (2020). Astrocytes Control Sensory Acuity via Tonic Inhibition in the Thalamus. Neuron, https://doi.org/10.1016/j.neuron.2020.08.013. [Full Text] [PDF]

· Peng, W.#, Wu, Z.#, Kun, S.#, Zhang, S., Li, Y. & Min, X.* (2020). Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 369, 1208. [Full Text] [PDF]

· Mazzone, C.M., Liang-Guallpa, J.,Li, C., Wolcott, N. S., Boone, M. H., Southern, M., Kobzar, N. P., Salgado, I. A., Reddy, D. M., Sun, F., Zhang, Y., Li, Y., Cui, G. * & Krashes, M. J.* (2020). High-fat food biases hypothalamic and mesolimbic expression of consummatory drives. Nature Neuroscience, https://doi.org/10.1038/s41593-020-0684-9. [Full Text] [PDF]

· DeGroot, S.R., Zhao-Shea, R., Chung L., Klenowski, P.M., Sun, F., Molas, S., Gardner, P.D., Li, Y. & Tapper, A.R.* (2020). Midbrain dopamine controls anxiety-like behavior by engaging unique interpeduncular nucleus microcircuitry. Biological Psychiatry, https://doi.org/10.1016/j.biopsych.2020.06.018. [Full Text] [PDF]

· Zhu, P. K. ,Zheng, W. S. , Zhang, P., Jing, M., Borden, P. M., Ali, F., Guo, K., Feng, J., Marvin, J. S., Wang, Y., Wan, J., Gan, L., Kwan, A. C., Lin, L., Looger, L. L., Li, Y. & Zhang, Y.* (2020). Nanoscopic visualization of restricted nonvolume cholinergic and monoaminergic transmission with genetically encoded sensors. Nano Lett., https://doi.org/10.1021/acs.nanolett.9b04877. [Full Text] [PDF]

· Lin, R.*, Liang, J., Wang, R., Yan, T., Zhou, Y., Liu, Y., Feng, Q., Sun, F., Li, Y., Li, A., Gong, H., & Luo, M.* (2020). The raphe dopamine system controls the expression of incentive memory. Neuron, 1420-19. [Full Text] [PDF]

· Zhang, X., Noyes, N. C. , Zeng, J., Li, Y. & Davis, R. L.* (2019). Aversive training induces both pre- and postsynaptic suppression in Drosophila. The Journal of Neuroscience, 1420-19. [Full Text] [PDF]

· Handler, A., Graham, T. G. M., Cohn, R., Morantte, I., Siliciano, A. F., Zeng J., Li, Y. & Ruta, V.* (2019). Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell, 178(1), 60-75. [Full Text] [PDF]

· Liang, X., Ho, M. C., Zhang, Y., Li, Y., Wu, M. N., Holy, T. E., & Taghert, P. H.*  (2019). Morning and evening circadian pacemakers independently drive premotor centers via a specific dopamine relay. Neuron, 102(4), 843-857. [Full Text] [PDF]

· Zhou, M.#, Chen, N.#, Tian, J., Zeng, J., Zhang, Y., Zhang, X., Guo, J., Sun, J., Li, Y., Guo, A.*, & Li, Y.* (2019). Suppression of GABAergic neurons through D2-like receptor secures efficient conditioning in Drosophila aversive olfactory learning. Proceedings of the National Academy of Sciences, 201812342. [Full Text] [PDF]

· Li, B.#, Wong, C.#, Gao, S. M., Zhang, R., Sun, R., Li, Y., & *Song, Y. (2018). The retromer complex safeguards against neural progenitor-derived tumorigenesis by regulating Notch receptor trafficking. eLife, 7, e38181. [Full Text] [PDF]

· Tanaka, M., Sun, F., Li, Y., & Mooney, R.* (2018). A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour. Nature, 563(7729), 117-120. [Full Text] [PDF][Extended data][Supplementary information]

· Chen, B.#, Huang, X.#, Gou, D., Zeng, J., Chen , G., Pang, M., Hu, Y., Zhao, Z., Wu, H., Cheng, H., Zhang, Z., Xu, C., & Li, Y., Chen, L.*, Wang, A.* (2018). Rapid volumetric imaging with Bessel-Beam three-photon microscopy. Biomedical optics express, 9(4), 1992-2000. [Full Text] [PDF]

· Shen, Y., Ge, W. P., Li, Y., Hirano, A., Lee, H. Y., Rohlmann, A., Missler, M., Tsien, R. W., Jan, L. Y., Fu, Y. H.* & Ptacek, L. J.* (2015). Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proceedings of the National Academy of Sciences, 112(10), 2935-2941. [Full Text] [PDF]

· Liang, L., Li, Y., Potter, C. J., Yizhar, O., Deisseroth, K., Tsien, R. W., & Luo, L.* (2013). GABAergic projection neurons route selective olfactory inputs to specific higher-order neurons. Neuron, 79(5), 917-931. [Full Text] [PDF]

· Park, H., Li, Y., & Tsien, R. W.* (2012). Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science, 335(6074), 1362-1366. [Full Text] [PDF]

· Yoo, A. S.*, Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., Lee-Messer, C., Dolmetsch, R. E., Tsien R. W. & Crabtree, G. R.* (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476(7359), 228-231. [Full Text] [PDF]

· Zhang, Q., Li, Y., & Tsien, R. W.* (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science, 323(5920), 1448-1453. [Full Text] [PDF]

· Kuner, T.*, Li, Y., Gee, K. R., Bonewald, L. F., & Augustine, G. J. (2008). Photolysis of a caged peptide reveals rapid action of N-ethylmaleimide sensitive factor before neurotransmitter release. Proceedings of the National Academy of Sciences, 105(1), 347-352. [Full Text] [PDF]