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Computational, dynamical, and anatomical similarity of the cholinergic 
and dopaminergic neuromodulatory systems
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A Average responses of simultaneously recorded CBF and VTA DA 
neurons encode reinforcement prediction errors across serial value 
reversals. B Scatter plot of mean-centered response magnitudes, linear 
�t, and noise correlation for same mouse as in panel A. C Random 
rewards task and example traces illustrating covarying CBF and VTA DA 
activity and correlations with spontaneous behavior.  D Spectral coher-
ence magnitude for CBF and VTA DA activity during spontaneous behav-
ior E,F Time-resolved coherence estimates aligned to reward delivery 
show that CBF and VTA DA activity are strongly coupled by reinforce-
ment (peri-reward) but still signi�cantly coupled in the absence of exter-
nal stimuli (post-reward). G Retrograde tracing reveals that both CBF and 
VTA DA neurons receive prominent input from partially overlapping 
regions of the NAc core and shell. H Circuit model proposing that NAc 
input provides a value signal responsible for related VTA DA and CBF 
reinforcement prediction errors.
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