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SUMMARY

Striatal dopamine plays fundamental roles in fine-tuning learned decisions. However, when learning from 

naive to expert, individuals often exhibit diverse learning trajectories, defying understanding of its underlying 

dopaminergic mechanisms. Here, we longitudinally measure and manipulate dorsal striatal dopamine signals 

in mice learning a decision task from naive to expert. Mice learning trajectories transitioned through se

quences of strategies, showing substantial individual diversity. Remarkably, the transitions were systematic; 

each mouse’s early strategy determined its strategy weeks later. Dopamine signals reflected strategies each 

animal transitioned through, encoding a subset of stimulus-choice associations. Optogenetic manipulations 

selectively updated these associations, leading to learning effects distinct from that of reward. A deep neural 

network using heterogeneous teaching signals, each updating a subset of network association weights, 

captured our results. Analyzing the model’s fixed points explained learning diversity and systematicity. Alto

gether, this work provides insights into the biological and mathematical principles underlying individual long- 

term learning trajectories.

INTRODUCTION

Many abilities are learned over long time periods spanning 

weeks or months. For instance, a novice can take many months 

to learn how to play tennis. Such long-term learning entails sub

stantial individual variability. Individuals tend to follow diverse 

trajectories from naive to expert, discovering different strategies 

at different times, just as tennis players often develop distinct 

playing styles. Decades of experimental and theoretical work 

have provided fundamental insights into the neuronal circuits 

and computations underlying learning.1–12 However, these 

studies have mostly examined learning over short timescales. 

Thus, the behavioral correlates, neuronal underpinning, and 

computational principles governing long-term learning trajec

tories and their individual diversity are not understood.

Past neuroscientific studies have often operationalized 

learning as the fine tuning of an already learned task in expert an

imals. Expert animals tend to exploit their knowledge of the task, 

leading to only small changes in behavior and negligible individ

ual diversity. The results from these studies have been broadly 

captured by standard reinforcement learning (RL) models that 

(re-)learn the value of predetermined states through reward pre

diction error (RPE) updates.3,13,14 Long-term learning, however, 

involves discovering state representations that enable the adop

tion of increasingly effective strategies. This often leads to sub

stantial diversity in strategy transitions across individuals 

through learning. It has been difficult to determine the degree 

of systematicity in what appears to be an inherently stochastic 

long-term learning process—does behavior early in learning 

determine future behavior? Moreover, the principles governing 

individual diversity are not understood. Thus, it remains an 

open question whether the RL framework can account for 

long-term learning trajectories within and across individuals.

Neuronal signals across several brain areas are important for 

learning.15,16 Many studies have shown that dopamine (DA) neu

rons and brain areas receiving DA signals, such as the striatum, 

are essential for learning to make decisions.17–30 These DA sig

nals encode RPE and have been shown to drive plasticity in cor

tico-striatal synapses.31–36 In particular, for learning to make 

perceptual decisions (i.e., decisions guided by incoming sensory 

information) dorsal regions of striatum, and their cortical and 

dopaminergic inputs, play critical roles.4 However, the role of 

dorsal striatal DA signals in long-term learning to make percep

tual decisions remains unknown. Crucially, if DA signals underlie 

long-term learning trajectories, these teaching signals should 

reflect and shape the diverse intermediate strategies employed 

ll
OPEN ACCESS 

Cell 188, 1–17, July 10, 2025 © 2025 The Authors. Published by Elsevier Inc. 1 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article in press as: Liebana et al., Dopamine encodes deep network teaching signals for individual learning trajectories, Cell 

(2025), https://doi.org/10.1016/j.cell.2025.05.025

http://creativecommons.org/licenses/by/4.0/
mailto:samuel.liebanagarcia@dpag.ox.ac.uk
mailto:armin.lak@dpag.ox.ac.uk
https://doi.org/10.1016/j.cell.2025.05.025


Figure 1. Mice form diverse yet systematic learning trajectories from naive to expert 

(A) The visual decision task for head-fixed mice (STAR Methods). 

(B) Accuracy over days per mouse (gray) and averaged across all mice (black, n = 30). 

(C) Psychometric curve over quartiles. Quartiles are defined per mouse by dividing days into 4 groups, with any remainder added to the last group. Negative 

(positive) contrast values indicate stimuli presented on the left (right) side of the screen. P(‘‘Right’’) indicates the probability of reporting ‘‘right’’ side stimulus 

position. Unless specified differently, error bars indicate ± SEM across mice. 

(D) First four columns, psychometric curves from 3 example mice on 4 example days throughout learning. Error bars indicate the 95% confidence interval of a 

two-sided binomial test on P(‘‘Right’’). See Figure S1G for chronometric curves. Last column, per mouse (thin) and average expert psychometric curves clustered 

by trajectory type (thick): right-associating (green), balanced (orange), and left-associating (purple). See Figure S1H for corresponding chronometric curves. 

Cluster labels for each mouse were obtained from (J), and colors from Figure S1L. 

(E) Schematic explaining behavioral metrics. Left (right) slope is defined as the absolute difference between P(‘‘Right’’) for left (right) stimulus and zero-contrast 

trials. Bias is defined as the difference between zero-contrast P(‘‘Right’’) and balanced choice probability (i.e., 0.5). 

(F) Bias over days per mouse (thin) and for the 3 clusters from (J) (thick). In right- and left-associating mice, biases increase before reversing (p < 0.05; two-sided 

paired t test first 2 days vs. days 5–6). 

(G) Regression of early bias (days 4–8) against late bias (final 5 days). Each point represents a mouse. p value calculated from the exact distribution of r. Shaded 

regions indicate 95% confidence interval across mice. 

(H) Difference between right and left psychometric slopes over days per mouse (thin) and for 3 clusters from (J) (thick). 

(I) Regression of early bias against late slope difference. 

(legend continued on next page) 
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by different animals throughout learning. Testing this hypothesis 

requires probing DA signals during learning of a decision task 

that admits different strategies, ensuring sufficient yet tractable 

individual diversity. However, past studies have often recorded 

DA signals in expert animals, instead of recording throughout 

learning from naive to expert.

Here, we address these questions by examining learning tra

jectories and dorsal striatal DA signals in tens of mice learning 

a visual decision-making task from naive to expert. Mice learned 

transitioning through sequences of strategies that varied widely 

across individuals. However, the strategy transitions were 

remarkably systematic; each animal’s future behavior could be 

predicted weeks in advance. Dorsal striatal DA signals reflected 

the diverse yet systematic transitions of learning trajectories. 

These signals encoded RPEs suitable to shape the intermediate 

strategies from naive to expert. Optogenetic experiments pro

vided causal evidence for the specific learning effects of these 

DA signals, which were distinct from the effect of reward on 

learning. We demonstrate that mice learning trajectories, the 

DA signals and their optogenetic effects cannot be explained 

by standard ‘‘shallow’’ RL models with predetermined state rep

resentations. Instead, our results suggest that mice refine their 

state representations throughout learning, a process well 

captured by a deep neural network that employs gradient-based 

RL. Further, we demonstrate that networks require heteroge

neous teaching signals to capture the DA signals and their opto

genetic effects. Our deep RL model reproduces the mice’s 

diverse yet systematic stage-like transitions between behavioral 

strategies and shows that they emerge from a hierarchy of sad

dle points. We conclude that the fixed point structure of a deep 

neural network model provides a general framework for under

standing long-term learning within and across individuals.

RESULTS

Mice form diverse yet systematic learning trajectories 

from naive to expert

To study long-term learning of perceptual decision making, we 

further developed an established visual decision task for head- 

fixed mice.37 In each trial, we presented a visual stimulus (a 

grating) on the left or right side of a screen. The mouse, head- 

fixed in front of the screen, reported the stimulus position (left 

or right) by steering a wheel with its forepaws to bring the stim

ulus to the center of the screen (Figures 1A and S1A; STAR 

Methods). The mouse received a drop of water reward for 

each correct choice (Figure 1A). The contrast of the grating stim

ulus changed across trials, making the trials easier or harder. 

Some trials did not have a stimulus (i.e., zero-contrast trials), 

here, animals were rewarded randomly (50/50) regardless of 

the wheel movement direction (Figure 1A). We trained the mice 

over multiple days with a single session each day. Importantly, 

we kept the task unchanged throughout the entire experiment, 

presenting the full set of stimuli, task contingencies, and trial 

timing from day 1 until expert performance (STAR Methods). 

This ensured that any changes in behavior are a consequence 

of the animals’ internal learning mechanisms, rather than exper

imentally imposed changes to the task. We trained 40 mice, 30 of 

which learned the task reaching accuracies of at least 70% 

(Figures 1B, S1B, and S1C; median days and trials to reach 

70% were 19 days and 3,376 trials, respectively), showing pro

gressively steeper psychometric curves (Figure 1C) and faster 

choice response times (RTs, Figure S1D).

In early days of learning, mice favored left or right choices to 

varying degrees, exhibiting flat, but often biased, psychometric 

curves (Figures 1D, first column, 1F, and 1G). The biases usually 

increased in initial days (Figures 1F and S1F), and RTs averaged 

across all trial types decreased (Figures S1D–S1F). This 

decrease in RTs led to an increase in reward rate, i.e., reward 

per unit time (Figures S1E and S1F). RTs then started to depend 

on visual stimuli, i.e., mice showed faster RTs for trials with visual 

stimuli compared to zero-contrast trials, resulting in chrono

metric curves that were no longer flat (Figures S1D–S1F). These 

changes in biases, RTs, and reward rate occurred while choice 

accuracies were still at chance level, i.e., flat psychometric 

curves (Figures S1E and S1F). Thus, early days were marked 

by strategies where the mice ignored the position of the stimulus 

for making choices, showing decreasing RTs and increasing 

biases with different directions across animals.

During later days of learning, mice’s choices began to depend 

on the location of visual stimuli, resulting in psychometric curves 

with increasing slopes. Importantly, slopes often developed 

asymmetrically for left and right stimuli, with a vast diversity 

across mice (Figures 1H–1L). To visualize this diversity, we 

colored each mouse’s learning trajectory based on the asymme

try of its psychometric slopes (Figure S1L; STAR Methods). 

While the diversity of slopes formed a continuum across mice, 

to better visualize the main trends, we clustered slope trajec

tories over learning (Figure 1J; STAR Methods). In some mice, 

the slopes increased similarly on both sides, resulting in more 

balanced psychometric curves (Figure 1J). This indicates that 

their strategy involved associating both left and right stimuli 

with their corresponding rewarded choice directions 

(Figure 1D, middle row). However, in other mice, the slope pri

marily increased on one side while the other side remained flat, 

forming a one-sided psychometric curve (Figures 1J and 1D, 

top and bottom rows). These mice therefore solved the task by 

forming a single stimulus-choice association: they associated 

stimuli on the left (right) side of the screen with their correspond

ing choice direction and made the alternative choice in trials in 

which the associated stimulus was absent (left-associating and 

right-associating mice; Figure 1D, rightmost column). Consistent 

with this strategy, choices in zero-contrast trials and trials with 

non-associated stimuli were indistinguishable, i.e., the psycho

metric curve was flat on one side (Figure S1J). These slope 

(J) Right vs. left slope across days per mouse (thin) and for 3 clusters (thick). The hue of the cluster lines indicate progress through learning. Left-associating 

(purple), balanced (orange), and right-associating (green) clusters are obtained from dynamic time warping clustering (STAR Methods). 

(K–M) In order, difference in right and left (R-L) slope vs. bias; R-L slope vs. accuracy and bias vs. accuracy across days per mouse (thin) and for the 3 clusters 

from (J) (thick). 

See also Figures S1 and S2.
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Figure 2. Dorsal striatal DA signals develop over learning, encoding stimulus-choice associations 

(A) Fiber photometry setup for recording DLS DA release (n = 20; STAR Methods). 

(B) Accuracy over days and simultaneous trial-wise stimulus-aligned DLS DA signals from an example mouse (only correct trials). Blue lines indicate the time of 

stimulus onset (left) and when the stimulus is brought to the center (i.e., choice completion, right). When indicated, recorded DA levels were normalized to correct 

for non-task-relevant day-by-day variations in fluorescence. 

(C) Average time warped DLS DA signals in correct trials with stimulus on the left (red) and right (blue) for the same days and mice as in Figure 1D. Vertical dashed 

lines indicate stim. onset, stim. center, and reward delivery time. Error bars indicate ± SEM across trials. 

(D) Average stimulus and outcome DLS DA responses over deciles in correct trials for clusters from Figure 1J. Unless specified differently, error bars indicate ± 

SEM across mice. 

(E) Average time warped DLS DA signals in correct trials and average psychometric curves for the three clusters from Figure 1J in initial days (days 1–3, left), early 

days (days > 3 with accuracy n.s. greater than 0.5, middle), and expert days (accuracy n.s. smaller than 0.7, right). 

(legend continued on next page) 
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asymmetries often persisted as learning progressed (Figures 1L, 

S1K, and S1N), and their corresponding signatures were 

observed in RTs (Figures S1H and S1M). Importantly, despite 

asymmetries in slopes, one-sided and balanced mice reached 

similar levels of accuracy (Figure 1L). This is because both the 

presence and absence of stimuli can inform correct choices, 

as there is only one stimulus per trial. Mice that did not learn 

despite performing enough trials (i.e., 4,300, well above the me

dian of learners), showed early choice biases but failed to 

develop psychometric slopes (Figures S1O and S1P). Overall, 

we observed that in later days mice transitioned to more stim

ulus-dependent strategies, while exhibiting diversity in their 

use of stimuli to make choices.

Behavioral transitions throughout learning were systematic. 

The bias in early days strongly predicted the biases and psycho

metric curves in later stages of learning (Figures 1G and 1I). Mice 

with early left bias developed a larger slope on the left side of their 

psychometric curve, whereas mice with early right bias devel

oped a larger slope on the right side (Figure S1N). To achieve 

high accuracy with asymmetric slopes, mice with more one-sided 

strategies reversed their early bias during learning (Figures 1G, 

1K, and 1M). A model comparison analysis showed that early 

biases are likely due to a combination of unequal reward his

tory for left and right choices caused by randomness in the task 

(e.g., rewards on zero-contrast trials or random sequence of 

stimuli), together with an initial ‘‘innate’’ bias for one of the choices 

(e.g., handedness; Figure S1Q). However, these early biases did 

not appear to depend on imbalances in initial sensory processing. 

Biases were evident even prior to animals’ use of stimuli 

(Figure S1F). Further, although pupil and lick rate measures 

changed in response to stimuli and rewards (Figure S2A), these 

measures were similar for left and right stimuli in initial days 

(Figure S2B). Thus, naive mice developed varying levels of bias 

shaped by their reward history, and this early bias determined 

which stimuli were associated with choices later in learning.

Taken together, the results show that in learning to make visual 

decisions from naive to expert, mice exhibited diverse learning 

trajectories involving systematic transitions through behavioral 

strategies.

Dorsal striatal dopamine reflects individual long-term 

learning trajectories

We recorded DA release from day 1 until expert behavior in the 

dorsolateral striatum (DLS). We injected GRAB-DA38 in the 

DLS of wild-type mice and imaged DLS DA release every day 

during learning through implanted optic fibers (Figures 2A, 2B, 

and S3A; STAR Methods).

DA release occurred in response to specific events within a 

trial and changed throughout learning. A linear deconvolution 

analysis revealed that visual stimulus onset, arrival of the stim

ulus to the center of the screen in correct trials (i.e., ‘‘stim. cen

ter’’), and water reward (or its absence in incorrect trials) were 

the main events modulating DA release (Figure S3B). Consis

tently, wheel movements had negligible representation in DA re

sponses (Figures S3C–S3E). We defined a DA ‘‘stimulus’’ and 

‘‘outcome’’ response to examine changes over learning (STAR 

Methods). The stimulus response quantified DA release in a short 

time window after stimulus onset. The outcome response was 

defined as the sum of DA responses to completion of choice 

(the stimulus arriving to the center of the screen in correct 

choices, or the stimulus leaving the screen in incorrect choices) 

and water delivery (or its absence). We summed these re

sponses because the final stimulus position determines whether 

water will be delivered. In initial days, DLS DA release mostly 

occurred in response to rewarded outcomes but not visual stim

uli. As learning progressed, DA responses to visual stimuli grew 

and DA responses to water rewards diminished (Figures 2B–2E, 

S3B, S4A, and S4B). In incorrect trials, DA signals transiently 

decreased when reward was not delivered (Figure S3B).

The development of DA responses during learning reflected 

mice’s diverse learning trajectories. DA responses in individual 

mice matched the development of their psychometric curves 

(Figures 2C and S4A). In mice developing more one-sided psy

chometric curves, DA stimulus responses emerged most 

strongly for stimuli presented on the associated side (top and 

bottom rows in Figures 2C, 2D, S4A, and S4B). However, in 

mice developing more balanced psychometric curves, DA re

sponses to stimuli presented on left and right sides were similar 

(middle rows in Figures 2C, 2D, S4A, and S4B). The diverse 

behavioral trajectories were also reflected in the rewarded 

outcome DLS DA response; these DA outcome responses 

were small after associated stimuli and large after non-associ

ated stimuli (Figures 2C, 2D, S4A, and S4B).

In initial days, when both psychometric and chronometric 

curves were still flat, there were no DA responses to visual stimuli 

(Figures 2E, first column, S4C, and S4E). Subsequently, as RTs 

started to show signatures of mice using visual stimuli (i.e., 

non-flat chronometric curves), DA responses to stimuli emerged 

while psychometric curves remained flat (Figures 2E, middle col

umn, S4D, and S4E). These DA responses were strongest for 

stimuli with faster RTs, which appeared on the same side as 

the choice bias in one-sided mice (Figures 2E, middle column, 

S4D, and S4E). We asked whether these signals reflected asso

ciations animals were forming between stimuli and choices, or 

(F) Analysis of left- and right-associating mice DLS DA responses in expert ‘‘matched accuracy’’ days (difference in left and right stimulus trial choice accuracy is 

<0.1). Left, average psychometric curves in matched accuracy days. Middle, average time warped DLS DA signals in correct trials. Right, DA responses to stimuli 

and outcome in correct trials. p values calculated using two-sided paired t test. 

(G) Same matched accuracy analysis as in (F) but applied to balanced mice. 

(H) Fiber photometry setup for recording DA release in DLS and DMS. 

(I) Average time warped DA signals in correct trials with stimulus ipsilateral (cyan), contralateral (fuchsia), or 0-contrast trials (gray) in initial days (left), early days 

(middle), and expert days (right). 

(J) Same matched accuracy analysis as in (F) for one-sided mice, but now with recordings separated for DLS, DMS, and laterality of the associated stimulus 

(ipsilateral/contralateral). Error bars indicate ± SEM across matched accuracy days. p values calculated using two-sided paired t test. n.s., p > 0.05, *p < 0.05, 

**p < 0.005, and ***p < 0.0005, respectively. 

See also Figures S3, S4, S5, S6, and S12.
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whether they reflected each animal’s bias. To address this, we 

inspected trials without visual stimuli (zero-contrast trials). We 

did not observe any significant DA responses before outcome 

delivery in these trials, despite decreasing RTs over learning 

and significant choice biases in one-sided mice (Figures S4F 

and S4G). Thus, the DLS DA stimulus responses emerged as 

soon as animals started to form an association between visual 

stimuli and choices, the first signature of this appearing in RTs 

(Figure S4H). DA responses to stimuli were not evident on day 

1 (Figure S4I) and thus did not reflect stimulus novelty.21,39,40

DA signatures of associations being formed between stimuli 

and choices were also evident in DA outcome responses 

(Figures 2D and S4B). Thus, during early days, DA responses 

emerged, reflecting the first signatures of learning to associate 

stimuli and choices.

In later days, DLS DA responses strongly reflected the growing 

psychometric slopes observed across animals (Figures 2C–2E). 

In right-associating mice DA responses to stimuli were evident in 

response to right but not left stimuli (Figure 2E, top row, right). 

This pattern was opposite in left-associating mice (Figure 2E, 

bottom row, right). In balanced mice, both left and right stimuli 

elicited strong DA responses (Figure 2E, middle row, right). The 

relationship between psychometric slopes and DA responses 

to stimuli was maintained even after controlling for differences 

in the choice accuracy for left and right stimuli, i.e., selecting 

days where the accuracies were matched (Figures 2F, 2G, 

S4J, and S4K). Thus, in left- and right-associating mice, DA re

sponses to associated stimuli were significantly larger than to 

non-associated stimuli, despite equally high choice accuracy 

(Figure 2F). These observations held independent of stimulus lat

erality with respect to the recorded brain hemisphere (Figures 

S5A and S5B). Moreover, the encoding of psychometric slope 

was largely invariant to RTs (Figures S5C and S5D) and the accu

racy of pending choice (i.e., correct/incorrect; Figure S5E). 

These observations held in another cohort of animals (n = 6) 

trained with more graded levels of stimulus contrast to high per

formance (accuracy 80%–95%; Figure S6A). DLS DA responded 

to the outcome of correct and incorrect trials, reflecting the dif

ference between outcome value and the learned stimulus-choice 

association, i.e., the reward prediction that animals formed using 

visual stimuli. Hence, these DA responses decreased as stim

ulus-choice associations increased (Figures 2D and S5E, middle 

row), instead of reflecting choice accuracy (Figures 2F and 2G). 

Taken together, in later days of learning, DLS DA signals devel

oped substantial responses to visual stimuli, and a correspond

ing decrease in responses to trial outcome, only if those stimuli 

were associated with a choice. Thus, while DLS DA signals 

resemble a classic RPE, depending on each animal’s strategy, 

they did not always reflect choice accuracy.

The DA signals we observed are specific to DLS; we did not 

observe them in DA release recordings from the dorsomedial 

striatum (DMS; Figures 2H and S3F). DMS DA release showed 

four main characteristics. First, DMS DA responses to reward 

were negligible from the start of learning, unlike DLS DA 

(Figures 2I, left column, and S6B–S6D). Second, DMS DA sig

nals, unlike DLS DA, depended on the recorded brain hemi

sphere, showing particularly strong responses to contralateral 

and near zero responses to ipsilateral stimuli (Figures 2I, right 

column, and S6D–S6F). Third, these DMS DA contralateral 

stimulus responses were modulated by the animal’s strategy; 

they were only present if the contralateral stimulus was associ

ated with choice (Figures 2J and S6E). Lastly, similar to DLS, 

DMS DA stimulus responses emerged over learning: they 

were absent in the initial days of the experiment (Figures 2I, 

left column, and S6G). We confirmed these observations using 

a linear deconvolution (Figure S3G). The negligible DMS DA re

sponses to rewards in initial days indicate that these signals are 

not encoding the RPEs that we observed in DLS DA signals. 

Figure 3. DLS DA signals reflect learning trajectories from naive to 

expert 

(A) Difference in DLS DA responses to right and left stimuli (R-L) over days per 

mouse (thin) and for the clusters from Figure 1J (thick). 

(B) Regression of early difference in DLS DA responses to R-L stimuli (average 

across days 4–8) against late R-L slope difference (average across final 5 days 

of training). Each point represents a mouse. p value is calculated from the 

exact distribution of r. Shaded region indicates 95% confidence interval 

across mice. 

(C–F) In order, right vs. left DLS DA stimulus responses; difference in DLS DA 

responses to right and left stimuli (R-L) vs. bias; difference in DLS DA re

sponses to right and left stimuli (R-L) vs. accuracy; and DLS DA rewarded 

outcome responses in right-stimulus trials vs. left-stimulus trials across days 

per mouse (thin) and for the clusters from Figure 1J (thick). The hue of the 

cluster lines indicates progress through learning. 

See also Figure S6.
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Therefore, in the following sections, we primarily focus on DLS 

DA signals.

The dynamics of DLS DA signals showed striking similarities to 

the behavioral learning trajectories (Figure 3). Similar to behavior, 

DLS DA signals developed systematically. As such, from DA sig

nals throughout the experiment, it was possible to infer the ani

mals’ past and future DA signals (Figures 3A, S6I, and S6J; neu

ral trajectories plotted with colors and clusters obtained from 

behavior) and behavioral strategies (Figure 3B). DA responses 

to stimuli developed across days reflecting the associations 

each animal formed between visual stimuli and choices 

(Figures 3C–3E). Similarly, DA responses to rewards developed 

mirroring the evolving stimulus responses (Figures 3F and 

S6J–S6M). These results demonstrate that DA signals during 

learning evolve reflecting the intermediate strategies mice em

ployed, suggesting a crucial role for DLS DA in shaping learning 

trajectories.

DLS dopamine plays causal roles in driving learning, 

distinct from classic RPE

The DLS DA responses we observed have two main characteris

tics. First, one-sided animals did not learn to associate one of the 

visual stimuli with a choice (Figure 4A), despite strong DLS DA 

reward signals (Figure 2E). This suggests that these animals 

might not have a neuronal representation of the non-associated 

stimulus which can be trained using DLS DA signals. Second, in 

one-sided animals DLS DA did not respond during decisions 

made based on the absence of visual stimuli (e.g., trials with 

non-associated stimuli), even after matching the accuracy with 

those for associated stimuli (Figures 2F and 4A). These charac

teristics cannot be explained by a classic RPE estimated using 

all task-relevant cues (e.g., the visual stimulus or its absence). 

Such RPEs would reflect the expected value (proportional to ac

curacy) of each task-relevant cue, not only that of visual stimuli 

(Figure 4A). In contrast, the DLS DA responses reflect predic

tions and RPEs estimated only using a subset of the task-rele

vant cues, i.e., the visual stimuli. Based on these characteristics, 

we predicted distinct learning effects for DLS DA and classic 

RPEs. DLS DA reward responses should only update associa

tions between choices and associated visual stimuli, whereas 

classic RPEs update associations between choices and all 

task-relevant cues. To test this, we performed two optogenetic 

experiments: inhibiting DLS DA release throughout learning 

and stimulating DLS DA release in animals after learning.

Longitudinal inhibition of DLS DA substantially impaired 

learning. To inhibit DLS DA release, we injected the inhibitory 

opsin eOPN341 into the substantia nigra pars compacta (SNc) 

of DAT-Cre mice (n = 5) and implanted optic fibers above DLS 

(Figures 4B and S7A). We then illuminated DLS DA axons 

through the optic fiber with 532-nm laser pulses at random inter

vals, not locked to any task event (Figure 4B; STAR Methods). 

These animals showed significantly lower accuracy compared 

with all other mice that performed a similar number of trials 

(n = 40, learners and non-learners; Figure 4C). The accuracy re

mained around 50% and psychometric slopes did not develop, 

indicating that these mice did not learn to use the visual stimuli 

for decisions (Figures 4C and 4D). Moreover, RTs developed a 

dependence on visual stimuli much later in training (chrono

metric curves remained flat; Figures S7B and S7C). However, 

DLS DA inhibition largely spared other signatures of learning 

that did not rely on visual stimuli, i.e., developing bias and an 

overall decrease in RT (Figures S7B and S7C). The inhibition 

also largely spared gross motor functions; mice decreased 

RTs over learning and performed a similar number of trials per 

session as naive mice. These results indicate that DLS DA is 

necessary for learning the task and forming stimulus-choice 

associations.

Stimulation of DLS DA provided causal evidence for our hy

pothesized role of DLS DA in learning. We hypothesized that 

stimulation of DLS DA signals at outcome time should only up

date the association between stimuli used for decisions and 

choices, leading to a reduction of DLS DA reward signals over tri

als and the emergence of DLS DA responses to these stimuli 

(Figure 4E). However, this stimulation should not update the as

sociation between choice and the stimuli that the animal does 

not use. Importantly, this is distinct from the learning effect of a 

classic RPE, e.g., triggered by extra water reward (Figure 4E). 

A classic RPE would update the association between all reward 

predictive cues and choices, having a learning effect on all trial 

types. To test this, we injected FLEX-ChrimsonR into the SNc 

of DAT-Cre mice (n = 5) and implanted optic fibers above DLS 

(Figures 4F and S7D). We first trained animals and selected 

mice that developed one-sided strategies. We then stimulated 

DLS DA axons at the outcome time of incorrect choices using 

635 nm laser pulses (Figure 4G). We stimulated in incorrect 

choices because the range of psychometric changes for correct 

choices in expert animals is small due to ceiling effects. We per

formed this stimulation in trials with associated or non-associ

ated stimuli in alternating days (Figure 4G, left column). The stim

ulation selectively influenced the associated side of the 

psychometric curve, decreasing the accuracy of choices in 

these trials (Figure 4G, upper row). In contrast, delivering water 

reward after incorrect choices in a similar experiment shifted 

the entire psychometric curve, decreasing the accuracy particu

larly on the flat side (Figure 4G, lower row). While DLS DA stim

ulation did not influence choices in zero-contrast trials, the 

reward delivery significantly affected those trials, lending further 

support for our conclusion. Therefore, distinct from the effect of 

water reward, the learning effect of DLS DA relies on the animal 

using visual stimuli for decision-making.

A deep RL model with heterogeneous RPEs captures 

learning trajectories and dopamine signals

To understand the computational principles underlying the 

learning trajectories, DA signals and optogenetic effects, we de

signed several neural network models with different architec

tures and learning rules. We first outline a simple tractable 

deep network model that captured the data. We show that the 

model requires depth, i.e., multiple layers of tunable weights, 

and heterogeneous teaching signals to account for the data. 

We then demonstrate that the key features of our model gener

alize to larger networks.

The deep network model contains multiple layers of neurons 

that learn to predict the reward associated with each stimulus 

and choice. The network has an input layer, a hidden layer, 

and an output layer (Figure 5A; STAR Methods). To capture our 
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Figure 4. DLS DA is required for learning and updates behavior distinct from a classic RPE 

(A) Top, schematic explaining the relabeling of the axes from left/right to non-associated/associated. Bottom, schematic showing the observed patterns of DLS 

DA release in expert one-sided animals, alongside the signals expected from a classic RPE. 

(B) Schematic for optogenetic inhibition experiment (STAR Methods). Laser pulses were delivered in random intervals of 6–14 s, independent of task trials. 

(C) Accuracy over days for mice with DLS DA inhibition (green; thin: each mouse, thick: average), and averaged across all the other mice that were trained on the 

task for at least 4,300 trials (black). In all panels, error bars around averages indicate ± SEM over mice. 

(D) Psychometric curve over quartiles for DLS DA inhibition mice (green) and all other mice (black). 

(E) Schematic comparing the predicted learning effect of stimulating DLS DA with that expected from a classic RPE. 

(F) Schematic for optogenetic excitation experiment (STAR Methods). 

(G) Left, predicted results of stimulating DLS DA (top) and manipulating classic RPEs (i.e., delivery of water, bottom) at the outcome of error trials, switching in 

alternating days of experimentation. Right, average psychometric curves, and their difference, on days with DLS DA stimulation (top) and reward delivery (bottom) 

on error trials with non-associated (gray) and associated (black) stimuli. p values calculated using two-sided one-sample t test. See Figure S7E for corresponding 

chronometric curves. Figure S7F shows the same analysis applied selectively for mice in which both experiments were performed. *p < 0.05. 

See also Figures S7 and S12.
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Figure 5. A deep RL tutor-executor network captures learning trajectories and DA signals 

(A) Compact (left) and expanded (right) schematic of the tutor-executor deep RL network and learning rule. 

(B) Diagram showing the proposed mapping between the model and brain anatomy. 

(C) Cf. Figure 1F, bias over trials per simulation (thin), for 3 clusters from (G) (thick), and for the average dynamics (thick dashed). Thick dashed lines in all panels 

indicate trajectories derived from the average dynamics (see STAR Methods). 

(D) Cf. Figure 1G, regression of early bias (trials 1,000–2,000) against late bias (final 1,000 trials). Each point represents a simulation. p value is calculated from the 

exact distribution of r. In all panels, shaded regions indicate 95% confidence interval across mice. 

(E) Cf. Figure 1H, difference between right and left psychometric slopes over trials per simulation (thin) and for 3 clusters from (G) (thick). 

(F) Cf. Figure 1I, regression of early bias against late slope difference. Each point represents a simulation. p value is calculated from the exact distribution of r. 

(legend continued on next page) 
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DLS DA signals, and their learning effects in the optogenetic ex

periments, the network is organized into parallel pathways: the 

visual stimulus pathway (Figure 5A, pink) and the ‘‘constant’’ 

pathway encompassing all other inputs that do not vary across 

trials, e.g., auditory go cue (Figure 5A, aqua). A matrix of nonneg

ative weights denoted by W1 connects the input layer to the hid

den layer, and similarly nonnegative weights in W2 connect the 

hidden layer to the output layer. The weights in W1 form one- 

to-one connections between input layer neurons and the hidden 

layer (‘‘cortical’’) neurons, resembling the anatomical segrega

tion of visual inputs in each brain hemisphere. The weights in 

W2 are divided into two pathways, those connecting hidden layer 

neurons receiving visual inputs with the output layer, and those 

connecting the hidden layer neuron receiving constant input 

with the output layer. These resemble the brain’s segregated 

‘‘cortico-striatal’’ projections (Figure 5B). The outputs of the 

network are two action values, QL and QR, reflecting the learned 

value (i.e., reward prediction) of making each choice as a func

tion of the inputs.

On each trial, the model receives inputs, makes a choice, and 

learns from the outcome. Two binary inputs ‘‘Vis. stim. L’’ and 

‘‘Vis. stim. R’’ (represented as 0/1) indicate which of the stimuli 

is presented on a particular trial. The third input "constant" is al

ways set to 1 to reflect stimulus-independent input, capturing 

environmental features that do not change trial-by-trial (e.g., 

auditory go cue). The model makes choices by comparing QL 

and QR using a softmax rule. The model then compares the 

outcome of the choice (reward/no reward) with its corresponding 

reward prediction to calculate RPEs used to update the weights 

W1 and W2. The model uses three different RPEs to update its 

weights. For W1, the RPE is calculated using a ‘‘total’’ reward 

prediction using all the inputs (Qch). For W2, the updates differ 

for the two pathways (Figure 5A, pink and aqua arrows, respec

tively). The RPE in the stimulus pathway is calculated using a 

partial reward prediction (Qstim
ch ) based on the stimulus inputs 

(Vis stim. L and R), whereas the RPE in the constant pathway 

is calculated using a prediction based only on the constant input 

(Qconst
ch ). The stimulus pathway’s reward prediction and RPE is 

the model’s account of DLS DA stimulus and outcome re

sponses respectively (Figures 5A and 5B). This learning rule 

yields updates that minimize three different losses through 

gradient descent: the cortical loss equal to the total RPE2, and 

the two ‘‘cortico-striatal’’ losses equal to the pathway-specific 

RPE2s (STAR Methods). We term this model the ‘‘tutor-exec

utor’’ network because the cortical learning (W1) tutors down

stream cortico-striatal learning (W2) by determining the relative 

salience of the inputs and balancing updates in the executor 

pathways to minimize its total loss.

The model captured the diverse learning trajectories across 

mice. Similar to mice, the model started learning by developing 

varying degrees of left/right bias (Figures 5C and 5D cf. 

Figures 1F and 1G). Subsequently, the model’s biases reversed 

as its psychometric slopes grew, reproducing the diversity of 

left/right slope differences seen across mice (Figures 5E and 

5F cf. Figures 1H and 1I). Further, the model’s bias early in 

learning predicted bias and psychometric slopes later in learning 

(Figures 5D and 5F cf. Figures 1G and 1I; Figure S8A cf. 

Figure S1N). Thus, the model’s entire learning trajectories 

resembled the diverse yet systematic trajectories of mice and 

exhibited similar sigmoidal accuracy curves over comparable 

timescales (Figures 5G–5J cf. Figures 1J–1M; Figure S8B cf. 

Figure S1C; Figures S8C–S8E cf. Figures 1B–1D). The model’s 

simplicity allowed us to derive expressions for its average 

learning dynamics (STAR Methods), which showed close prox

imity to our behavioral data and model simulations (Figures 5C, 

5E, and 5G–5J, thick dashed lines).

DLS DA responses over learning were also well captured by 

the model. We derived expressions for the trial-by-trial DA re

sponses to stimuli and outcomes using reward predictions and 

RPEs from the stimulus pathway (STAR Methods). The partial 

prediction and RPE of the stimulus pathway best captured the 

DLS DA responses, compared with the constant and total pre

dictions and RPEs (Figure S8F cf. Figure 2D). Analogous to the 

data, model-derived DA responses to stimuli grew over learning, 

reflecting the stimulus-choice associations that each animal 

formed (Figure 5K cf. Figure 3A; Figure S8F cf. Figure 2D). The 

model-derived DA signals early in training predicted both the 

model’s slope difference and DA signals late in training 

(Figures 5L, S8G, and S8H), akin to DLS DA data (Figures 3B, 

S6I, and S6J). Thus, model-derived DA responses to stimuli 

across learning exhibited the diverse yet systematic progression 

of empirical DA signals (Figures 5M–5O cf. Figures 3C–3E). 

Finally, model-derived DA responses to outcome also showed 

strong similarity to our data, encoding the difference between 

the outcome value and the reward predicted by the stimulus, 

i.e., RPEs in the stimulus pathway (Figure 5P cf. Figure 3F; 

Figures S8I–S8K cf. Figures S6K–S6M).

Without a deep architecture, standard shallow RL models with 

fixed state representations do not capture the mice’s diverse 

learning trajectories. We simulated learning in a shallow version 

(G) Cf. Figure 1J, right vs. left slope over trials per simulation (thin) and for 3 clusters (thick). Clusters and colors obtained using the same procedure as for the 

behavioral data in Figure 1J. The clusters from this analysis are used in all other panels. Here and in (H)–(J), numbered circles represent fixed points of the learning 

dynamics (see Figure 7) plotted using the average behavior arising from their corresponding weight configurations. 

(H–J) Cf. Figures 1K–1M, in order, difference in right and left (R-L) slope vs. bias, R-L slope vs. accuracy, and bias vs. accuracy over trials per simulation (thin) and 

for 3 clusters from (G) (thick). 

(K) Cf. Figure 3A, difference in DLS DA responses to right and left stimuli (R-L) over trials per simulation (thin) and for 3 clusters from (G) (thick). 

(L) Cf. Figure 3B, regression of early difference in DLS DA responses to R-L stimuli against late slope difference. Each point represents a simulation. p value is 

calculated from the exact distribution of r. 

(M–P) Cf. Figures 3C–3F, in order, right vs. left DLS DA stimulus responses; difference in DLS DA responses to right and left stimuli (R-L) vs. bias; difference in DLS 

DA responses to right and left stimuli (R-L) vs. accuracy; and DLS DA rewarded outcome responses on right-stimulus vs. left-stimulus trials per simulation (thin) 

and for 3 clusters from (G) (thick). Fixed points are plotted using the average DLS DA responses arising from their weight configurations. 

See also Figures S8, S10, and S11.
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of the tutor-executor network and found that its behavioral and 

neural trajectories did not display the characteristic one-sided 

strategies of mice, instead displaying trajectories similar to those 

of balanced mice (Figure 6A). The accuracy curve over learning 

of the shallow model also differed significantly from that of 

mice, lacking the initial plateau around 50% accuracy 

(Figure S8M). On the other hand, trajectories of the deep model 

reproduced the stages and diversity of mice learning trajectories 

and DLS DA signals (Figure 6B).

Explaining our optogenetic results requires the deep RL model 

to learn from heterogeneous RPEs. We tested two different 

learning rules for the model: one that included different RPEs 

for different pathways (Figures 6A and 6B) and another that 

only had a single total RPE (Figures 6C and 6D). For deep net

works, both learning rules capture behavioral learning trajec

tories (Figures 6B, 6D, S8, and S9). However, only the model 

with heterogeneous RPEs could capture the differential effects 

of DLS DA and water manipulations (Figures 6E and 6F cf. 

Figure 4G).

Having established that our tutor-executor deep network 

model with W1 one-to-one connectivity accounts for our data 

(Figure 5), we then explored the constraints of the network and 

its generalization to larger networks. First, we explored the ef

fects of network connectivity constraints. A fully connected 

Figure 6. Shallow networks and models without heterogeneous RPEs do not capture learning trajectories and optogenetic results 

(A) Compact architecture of a shallow version of the tutor-executor network (left), and right vs. left psychometric slopes over trials for simulations of this network 

(right). Trajectory colors obtained from the average slope asymmetry as in Figure S1L. Numbered circles represent fixed points of the network learning dynamics 

(see Figure S8L). 

(B) Compact architecture of the deep tutor-executor network (left), and right vs. left psychometric slopes over trials for simulations of this network (reproduced 

from Figure 5G). 

(C and D) Compact architecture and right vs. left psychometric slopes over trials for shallow and deep versions of the single-loss gradient descent network, 

including the fixed points of each model (see Figures S8N and S9). 

(E) Schematic and behavioral results of simulating the DLS ChrimsonR optogenetic experiment with the tutor-executor network. Left, schematic showing the 

alternating block structure and effect of DLS DA stimulation (top) and total (i.e., classic) RPE manipulation on the model’s learning rule (bottom). Right, cf. 

Figure 4G, average psychometric curves, and their difference, on blocks with DLS DA stimulation (top) and reward delivery (bottom) on error trials with non- 

associated (gray) and associated (black) stimuli. Error bars indicate ± SEM across simulations. 

(F) Schematic and behavioral results of simulating the DLS ChrimsonR optogenetic experiment with the single-loss gradient descent network. 

See also Figures S8 and S9.
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network could not replicate the data. However, a model in which 

the visual stimulus pathway was fully connected captured the re

sults (Figures S10A–S10C). Second, we relaxed the non-nega

tivity constraint on network weights, showing that while the 

one-to-one network can still capture the trajectories, a network 

with full connections in its stimulus pathway develops only 

balanced trajectories (Figures S10A and S10B). Exploring the ef

fect of these constraints on a network trained using a single total 

RPE gave similar results (Figures S10D–S10F). Third, we exam

ined the effects of network initialization. Initializing W1 of the one- 

to-one tutor-executor network with the weights of trained one- 

sided model simulations did not capture the learning trajectories, 

i.e., the late slope difference did not depend on the side of the 

early bias (Figures S11A–S11D). Further, manipulating the initial

ization of a network with full connections in its stimulus pathway 

gave rise to diverse learning trajectories, with larger connectivity 

between stimulus inputs leading to more one-sided trajectories. 

However, this initialization effect did not fully replicate the bias 

reversal (Figure S11G cf. Figure 1G), nor the relation between 

early bias and late psychometric slopes (Figure S11H cf. 

Figure 1I) or DLS DA signals (Figure S11I cf. Figure 3C). Lastly, 

a larger network trained using pixel-level visual stimuli captured 

diverse mouse learning trajectories (Figures S10G–S10I), indi

cating that our results generalize to larger models commonly 

used in machine learning.

Saddle points of the deep RL model explain learning 

trajectories and DA signals

We analyzed the deep tutor-executor network model to discover 

the mechanism that allows it to capture behavioral and neuronal 

data. To do so, we treated the deep RL model as a dynamical 

system and studied its average learning dynamics across inputs 

and choices.

Analysis of the model’s average dynamics revealed a hierar

chy of saddle points that explained the behavioral and neuronal 

trajectories (Figure 7A). We found these saddle points by deriving 

the fixed points of the average dynamics (i.e., weight configura

tions where the average update across inputs and choices goes 

to zero; STAR Methods). Saddle points have both stable and un

stable manifolds, and in their vicinity learning momentarily slows 

down (Figures 7B and 7C). These points span the entire learning 

process, starting from a ‘‘naive’’ weight configuration (0) and 

converging on a final ‘‘expert’’ global minimum (4), and reflect 

the diversity of trajectories across mice. The saddle points 

establish a systematic flow through the parameter space, 

whereby points approached early in learning influence those ap

proached later in learning.

Each fixed point has a characteristic behavioral and dopami

nergic signature, similar to mouse behavioral strategies and 

DLS DA responses. Simulations start close to the first saddle 

point (0 in Figure 7A), corresponding to a network configuration 

Figure 7. Saddle points of the deep RL model explain learning trajectories and DA signals 

(A) Schematic of the fixed point structure including behavioral and neural predictions, and corresponding network weight configurations. The connecting lines 

with arrows represent the steepest heteroclinic orbits into/out of each fixed point (see STAR Methods). All the fixed points are saddle points except for 4, which is 

the global minimum. 

(B) Schematic of the loss surface around a saddle point and a minimum, along with the classification of each model fixed point. 

(C) Average dynamics of the total RPE2 over learning for each of the clusters from Figure 5. Fixed points are plotted at approximate positions to depict their 

influence on the dynamics. See Figure S9 for a fixed point analysis of the single-loss gradient descent deep network. 

See also Figures S9, S11, and S13.
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with all weights set to zero. Next, simulations that, for example, 

develop an early right-side bias learn in the direction of the 1R 

saddle point, developing a strong association between the con

stant input and QR, evident in its corresponding weight configu

ration diagram (1R in Figure 7A). These simulations then move 

preferentially toward the next saddle point, 2R, developing an 

association between the right stimulus and QR while maintaining 

a strong right bias. This happens as the simulation is still making 

mostly right choices (weight between constant and QR is larger 

than between constant and QL) but starts to learn the correlation 

between right stimuli and reward after right choices. As this cor

relation is learned, the association between the constant input 

and QR weakens through small negative total RPEs that correct 

overpredictions of the reward on right-stimulus trials. This en

courages left choices in the absence of the right stimulus, such 

that simulations approaching 2R move toward 3R, where psy

chometric slopes emerge, and the bias starts to reverse. Here, 

the simulation maintains its association between the right stim

ulus and QR while developing a strong weight between constant 

and QL, without using the left stimulus. Thus, in the vicinity of this 

saddle point the simulation infers correct left choices from the 

absence of the right stimulus, showing psychometric slopes 

and DA signals similar to expert ‘‘right-associating’’ mice (green 

cluster in Figures 1, 2, and 3). A mirror image of this trajectory is 

observed in simulations that develop an early left bias (follow 1L, 

2L, and 3L), whereas more balanced simulations move from 1B 

toward 4, i.e., the global minimum. As such, the saddle points of 

the deep RL tutor-executor network govern the learning trajec

tories (see saddle points visualized in Figures 5G–5J and 5M– 

5P), explaining their diverse yet systematic transitions between 

strategies and corresponding DA signals.

The saddle points of a deep network model substantially influ

ence its learning dynamics. First, it governs the systematic transi

tions between strategies during learning, defining the relation be

tween early and late behavior. Further, the multiple layers of the 

deep network give rise to saddle points that are critical for ex

plaining learning trajectories, in particular 3R/L, that captures mi

ce’s one-sided strategies. These saddle points emerged in our 

tutor-executor deep RL network and networks trained with stan

dard gradient descent (Figures S8 and S9). In contrast, the saddle 

point structure of shallow models lack these one-sided saddle 

points and succinctly demonstrate why the shallow model cannot 

capture mice’s learning trajectories (Figures 6A, 6B, and S8L– 

S8O). Second, saddle points give rise to learning plateaus, where 

learning is slower. This can be observed in the dynamics of the 

model’s total RPE over learning, which exhibits plateaus in the vi

cinity of the saddle points (Figure 7C). Further, in the deep model, 

the 0 and 1 saddle points capture the initial plateaus in accuracy 

observed in mice (Figures S8M and S8O cf. Figure 1B). These pla

teaus also explain why some mice did not learn despite sufficient 

training (Figures S1O and S1P). Similar to these mice, trajectories 

of model simulations that did not learn stayed in close vicinity of 

1L/R or 2L/R saddle points (Figures S11J and S11K).

DISCUSSION

In this work, we showed that mice learning from naive to expert 

display diverse yet systematic transitions through behavioral 

strategies. DA signals acted as teaching signals shaping learning 

trajectories. These signals reflected the intermediate strategies 

mice adopted from naive to expert, encoding the stimulus- 

choice associations determined by each individual’s strategy. 

Consistently, optogenetic manipulation of these DA signals 

altered each individual’s behavior, in a manner distinct from 

the effect of water reward. We tied these behavioral and neural 

results together through a deep neural network model trained us

ing heterogeneous DA-like teaching signals, which reproduced 

the distribution of mouse learning trajectories, DLS DA signals 

and their optogenetic manipulations. The learning trajectories 

were qualitatively governed by saddle points and their connect

ing manifolds, providing a formal account for how a biological 

learning mechanism can steer and yield diverse yet systematic 

long-term learning trajectories.

Individual diversity in long-term learning

Unlike conventional shaping methods that gradually change the 

task from easy to difficult, we maintained the full (i.e., relatively 

difficult) task throughout the experiment. Given that this proced

ure might have slowed down learning, many of our mice did not 

reach asymptotic expertise often used in studies of decision- 

making. Nevertheless, our results hold in animals with very 

high performance and graded levels of stimuli. Our training pro

cedure allowed mice to explore and self-define their trajectories, 

facilitating individual diversity. This also allowed us to demon

strate that learning occurs in stage-like transitions. In fact, the 

substantial early side biases, and later one-sided strategies we 

observed could be due to the higher starting difficulty of our 

task. The effect of task difficulty in developing biases and one- 

sided strategies has been observed with other sensory modal

ities.42 Future studies can examine the effects of various shaping 

methods on learning trajectories.

Past studies have shown individual diversity in measures such 

as speed of learning across animals.43,44 Our results reveal that 

despite such individual diversity, learning trajectories can be 

highly systematic. In our data and model, the early variability in 

side bias emerges from uneven learning due to imbalances in 

the number of rewards after left and right choices, and not 

day-by-day variation in animals’ position. Consistently, analyses 

of eye movement and pupil size suggested that diversity in early 

side biases cannot be attributed to uneven detection of visual 

stimuli. However, these early side biases may be influenced by 

factors such as the mice’s initial position in the experimental 

rig and handedness. Beyond the effect of early side biases, 

different levels of confusion about the position of the stimuli in 

initial and early days might also contribute to one-sided learning 

trajectories.

Dopaminergic mechanisms for long-term learning

We found that DLS DA reflected key characteristics of a teaching 

signal shaping individual trajectories. Two such characteristics 

were that it reflected both the evolving sequences of strategies 

and the diversity of learning trajectories across mice. Crucially, 

our model demonstrates that these DLS DA signals encode 

RPEs based on only a subset of task-relevant cues, i.e., the stim

uli that animals use to make choices. This results in DLS DA re

flecting the stimulus-choice associations corresponding to each 
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strategy adopted throughout learning. This encoding persisted in 

highly trained mice and also guided trial-by-trial learning during 

asymptotic expert behavior, as our experiments with reward 

value manipulation showed (Figure S6H). The DLS DA signals 

differ from a total RPE that incorporates all task-relevant cues 

to compute reward predictions. The ‘‘partial’’ stimulus-based 

RPE we observe in DLS DA signals could arise from the hetero

geneous topography of cortico-striatal connectivity (Figure 5B). 

If so, our model implies that there should be different DA signals 

across striatal regions, as demonstrated here and in previous 

studies.22,23,30,45,46 For instance, our DLS DA signals were bilat

eral, in contrast to DMS DA signals, which showed responses 

only to contralateral stimuli here and previously.47 This difference 

could be due to DLS receiving more bilateral inputs from frontal 

association cortical areas compared with DMS.48 The DLS DA 

signals we recorded modulate the strength of local cortico-stria

tal synapses.32 This could rapidly regulate the size of stimulus- 

evoked responses in striatal neurons which form a functional 

closed loop by projecting back to midbrain DA neurons49–51

(Figure 5B), causing the changes in DA stimulus and outcome re

sponses we observed throughout learning.

Optogenetic experiments showed that DLS DA is necessary 

for learning the task and dissociated the effect of stimulus- 

based partial RPEs from total (i.e., classic) RPE on learning. 

Our behavioral and DLS DA results showed that a deep—not 

shallow—RL model is required to account for the trajectories 

but did not differentiate between learning from heterogeneous 

RPEs vs. a single total RPE. However, our optogenetic results 

distinguished these, showing that the deep model requires het

erogeneous teaching signals to account for the distinct learning 

from DLS DA signals (i.e., partial RPE) compared with reward 

size manipulation (i.e., total RPE). Our results thus show that 

heterogeneous DA signals are at the service of learning. From 

the perspective of calculating RPEs based on a subset of in

puts, our model is similar to a recent study.52 Critically however, 

unlike our model, their model sums heterogeneous RPEs to 

provide a ‘‘globally broadcasted’’ RPE (akin to our total RPE) 

for updating all weights into striatum. Other RL models, such 

as distributional RL, attribute DA heterogeneity to diverse sen

sitivities to positive and negative RPEs.53 Such a model does 

not capture our data because despite choices with associated 

and non-associated stimuli having similar reward distributions 

when accuracies are matched, DLS DA signals differed sub

stantially in these trials. Lastly, our deep RL model implicates 

DA in discovering states relevant to rewards, reminiscent of 

other models of causal learning.54

Signatures of stimulus-choice association emerged in RTs 

before being evident in choice accuracy. DLS DA stimulus sig

nals reflected this early signature, emerging precisely when 

mice showed signatures of using visual stimuli, i.e., when mice 

had a flat psychometric curve and choices for stimuli were 

becoming faster. Past studies have shown DA responses aligned 

to reward-seeking movements or even spontaneous move

ments.55,56 Although the precise temporal evolution of DA sig

nals might depend on the task,21,57 our results suggest that 

DLS DA signals were better locked to stimulus onset than 

choices. Nevertheless, these pre-outcome DA signals could 

contribute to reducing RTs by invigorating action26,58

(Figure S6N). The DLS and DMS DA signals also differed from 

previously reported DA novelty signals observed during initial 

exposure to stimuli.21,39,40,59 These signals were absent in initial 

days and grew over time, with DMS DA showing slightly faster 

growth over days than DLS DA (Figures S12A and S12B). The 

absence of DA novelty signals could be because the visual stim

uli we used were not salient enough in the initial stages of 

learning, before their task-relevance was discovered. DMS DA 

did not respond to reward delivery, and consistent with previous 

studies,47 did not reflect reward size (Figure S6H), suggesting 

that its role in learning differs from that of a RL RPE. Optogenetic 

manipulation of DMS DA signals at stimulus time led to contralat

eral biases developing over days (Figures S12C–S12E). Howev

er, the absence of DMS DA stimulus responses in initial days 

suggests that DMS DA might not contribute to the early biases 

we observed in mice.

A mathematical framework for long-term learning

Our experiments highlighted two hallmarks of long-term 

learning: its systematic stage-like progression through strategies 

and its marked individual diversity. Many other well-studied abil

ities such as semantic cognition and navigation are character

ized by similar structured transitions through strategies.60–62

However, the source of individual differences in learning has 

been difficult to understand. Our model reveals that both hall

marks could arise from a single dynamical process approaching 

saddle points in the reward landscape of a deep neural network. 

As the learning dynamics approach a saddle point, learning 

momentarily slows down until the saddle point’s unstable mani

fold is discovered.63,64 The dynamics then speed up as gradients 

grow, following the steepest path to the next saddle point in the 

sequence. This alternation between slow and fast learning along 

sequences of saddle points explains the systematic stage-like 

transitions during long-term learning. These transitions are 

evident in the average dynamics of the model’s total RPE 

(Figure 7C), which resembles mice RTs over learning 

(Figure S1I). Moreover, the divergence in the sequences of sad

dle points demonstrates how choices made early in learning in

fluence strategies developed later on and explains individual di

versity. Consistently, the trajectories of mice that failed to learn 

remained in the vicinity of early saddle points (1L/R or 2L/R). 

Finally, the model demonstrates that depth is a requirement of 

the circuit architecture without which saddle points, and hence 

the characteristic learning stages and their diversity, do not 

emerge. An intriguing feature of the tutor-executor learning dy

namics is that, with extensive training, weight magnitudes trans

fer from W1 (cortical) to W2 (cortico-striatal) while maintaining the 

value of their product W2W1 (Figure S13). This resembles previ

ously observed ‘‘transfer to striatum,’’ where cortex is crucial for 

early stages of learning.65 It also explains past results involving 

DLS in habits,66 as the decrease in W1 leads to lower learning 

flexibility. This work shows how saddle points are signatures of 

DA driven learning in ‘‘deep’’ cortico-striatal circuits, which could 

generalize beyond our task.

Limitations of the study

The temporal resolution at which we observed systematic trajec

tories was on the order of hundreds of trials. However, there 
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could also be behavioral strategy switches happening on faster 

timescales,67 which may be consistent with our observations. 

We did not measure DA signals in other DA-rich regions such 

as ventral or posterior striatum nor frontal cortex, but we specu

late that they might encode other prediction errors of our model. 

Lastly, while other learning rules might account for some aspects 

of our data, our model explains the results using a simple 

gradient descent learning rule.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

The data presented in this paper was collected from 65 (30+10+5+7+7+6) male wild-type C57/BL6J mice and DAT-Cre mice, with 

their age ranging between 9 to 30 weeks. The first 30 mice were wild-type mice that were trained on the learning experiment from 

naı̈ve to expert (i.e., learner mice). The next 10 mice were also trained on the task, but did not reach expertise despite more than 

4300 trials of training (i.e., non-learner mice). The next 5 were DAT-Cre mice where eOPN3 virus was expressed for the inhibition 

of dorsolateral striatum dopamine. The next 7 were DAT-Cre mice where ChrimsonR virus was expressed for the stimulation of 

dorsolateral striatum dopamine. The next 7 were DAT-Cre mice where ChrimsonR virus was expressed for the stimulation of dorso

medial striatum dopamine. The last 6 were wild-type mice that were trained with shaping, more contrast levels and more extensive 

training to higher accuracy levels. All experiments were conducted according to the UK Animals Scientific Procedures Act (1986) un

der appropriate project and personal licenses.

Surgical procedures

Animals were anaesthetized with isoflurane and were kept on a feedback-controlled heating pad (Stoelting 53810). Hair overlying the 

skull was shaved and the skin and muscles over the central part of the skull were removed. The skull was thoroughly washed with 

sterile saline. A head plate was attached to the bone posterior to bregma using dental cement (Super-Bond C&B). After the head plate 

fixation, we made craniotomies over the target areas and injected 300nl of AAV9-hsyn-DA2m (for recording dopamine, titer 5×1012 

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

pAAV-hsyn-GRAB_DA2m Addgene Cat#140553; RRID:Addgene_140553

pAAV-Syn-FLEX-rc[ChrimsonR-tdTomato] Addgene Cat#62723; RRID:Addgene_62723

pAAV-hSyn1-SIO-eOPN3-mScarlet-WPRE Addgene Cat#125713; RRID:Addgene_125713

pAAV-Ef1a-DIO-ChRmine-mScarlet-WPRE Addgene Cat#130998; RRID:Addgene_130998

Deposited data

Data to reproduce figures in paper Figshare https://doi.org/10.6084/m9.figshare.28877912

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory #Cat000664;RRID:IMSR_JAX:000664

Mouse: B6.SJL-Slc6a3tm1.1(cre)Bkmn/J The Jackson Laboratory Cat#006660;RRID:IMSR_JAX:006660

Software and algorithms

Code to reproduce figures in paper Figshare https://doi.org/10.6084/m9.figshare.28877942

MATLAB (2019a for Rigbox) MathWorks https://www.mathworks.com/

Rigbox (modified version) CortexLab (modified 

by Armin Lak)

https://github.com/ArminLak/Rigbox

Python (3.12) Python https://www.python.org/

Bonsai (2.8.1) Bonsai Foundation https://bonsai-rx.org/

JAX (0.4.34) The JAX Authors https://docs.jax.dev/en/latest/

Pytorch (2.5.1) Pytorch Foundation https://pytorch.org/

Fiber localization based on allenCCF CortexLab https://github.com/cortex-lab/allenCCF

Other

Fibre Photometry System (FP3002) Neurophotometrics https://neurophotometrics.com/fp3002

Mono Fiber-optic Patchcord Doric Lenses MFP_200/220/900-0.37_2m_FC-MF1.25

Low Noise Diode Laser Shanghai Dream 

Lasers Technology

SDL-532-LN-100MFL

Optic Fiber Cannula (200um core) Neurophotometrics https://neurophotometrics.com/cannulae-and-sleeves

Stereotaxic drill robot Neurostar https://robot-stereotaxic.com/drill-robot/
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genome copies/ml) into the right and/or left DLS (AP: +0.5mm from bregma; ML: +/-2.5mm from midline; DV: 2.8mm from dura) or 

DMS (AP: +1.25mm; ML: +/-1mm; DV: 2.8mm). For the optogenetic experiments, either 400nl of 4.1pAAV-hSyn1-SIO-eOPN3- 

mScarlet-WPRE (inhibition experiment, titer ∼4.67×1012 genome copies/ml) or 150nl of 3.2pAAV-Syn-FLEX-rc[ChrimsonR-tdTo

mato] (stimulation experiment, titer ∼1.67×1012 genome copies/ml) was injected into the right and left SNc (AP: -3mm; ML: +/- 

1.5mm; DV: -4.3mm) of DAT-Cre mice. The injections were performed slowly over 20 minutes using Nanoject II (Drummond). This 

was followed by implantation of the optical fiber over the DLS or DMS (core = 200 um, Neurophotometrics Ltd), which was secured 

to the head plate and skull using dental cement. Mice recovered for at least seven days following the surgery. We waited for an addi

tional 8 weeks for opsin expression in mice with eOPN3 injections and 4-5 weeks in mice with ChrimsonR injections.

METHOD DETAILS

Behavioral task

We trained mice in a complete psychometric visual decision-making task from day 1 until expertise. Following surgery recovery, mice 

were first habituated to the experimenter for 2-3 days, followed by 2-3 days of habituation to the experimental rig and head-fixation. In 

each day of the experiment, mice were head-fixed with their body and hind-paws resting on a stable platform with a covering, and 

their forepaws resting on a steering wheel that could be rotated left and right. Each trial began after the wheel was held still for a short 

quiescence period (t1=0.7-0.8s) (Figure S1A). A sinusoidal grating stimulus of varying contrast (0%, 25% and 50%) was presented on 

either the left or right side of a screen 10cm in front of the mouse, followed by an auditory go cue t2=0.2s after visual stimulus onset. 

The go cue indicated the start of the interactive period, during which wheel movements were coupled with movement of the visual 

stimulus on the screen. The mouse was required to indicate the position of the stimulus within a limited response time (t3=30s) by 

steering the wheel in the correct direction to move the stimulus to the center of the screen, causing a water reward (3ul drop) to 

be delivered via a spout positioned close to the mouth. While the stimulus was held in the center of the screen for t4=1s, a variable 

’feedback delay’ (t5=0.1-0.3s) separated the time of choice completion from reward delivery. Subsequently, the next trial started 

following an ’inter-trial delay’ (t7=2-3s). When an incorrect choice was made, the mouse was presented with a t6=0.5s white noise 

auditory stimulus feedback via speakers positioned near each ear and had a brief timeout period (t8=2s) before the next trial. When a 

mouse responded incorrectly to an ‘easy’ high-contrast stimulus (50% contrast), there was a 50% chance that the same stimulus was 

repeated in the next trials, until the mouse responded correctly. Mice were trained for approximately 30 minutes each day. In 6 mice 

(Figure S6A), we gradually included stimuli with lower contrasts throughout training to have stimuli with contrast of 0%, 6%, 12.5%, 

50% and 100%, and trained them to high performance (∼85-90%). The behavioral experiments were delivered by custom-made 

software written in MATLAB (MathWorks) which is freely available.68

Reward size manipulation experiment

In a subset of trained mice with dopamine recordings in DLS/DMS, we investigated the effect of reward size on choices and DA sig

nals with our behavioral task (Figure S6H), similar to previous studies.58 To do so, we provided twice as much water reward for correct 

choices after left or right stimuli (3ul vs. 1.5ul) in alternating days of testing. This alternation was performed for at least 6 days in each 

mouse (i.e. 3 days per condition).

Imaging dopamine release

To measure dopamine (DA) release in the dorsolateral striatum (DLS), we employed fiber photometry. Photometry and behavioral 

data were collected simultaneously. We used chronically implanted optical fibers to deliver excitation light through patchcords (Doric 

Lenses) and collected emitted fluorescence (Neurophotometrics FP3002). We used multiple excitation wavelengths (470 and 

415nm), delivered on alternating frames (sampling rate of 40 Hz), serving as target and isosbestic control wavelengths, respectively.

The recorded photometry signal was pre-processed following steps described previously.69 We began by de-interleaving the re

corded signal at 470nm and 415nm wavelengths. Both signals were then de-noised to remove short-pulse artefacts using a median 

filter with kernel size 5 (medfilt from scipy.signal). Subsequently, the signals were detrended with a zero-phase low-pass filter with a 

10Hz cutoff frequency (2nd-order butterworth filtfilt from scipy.signal). Next, a photobleaching correction was applied to remove slow 

changes in the signal likely coming from fluorophore degradation due to light exposure throughout the recording session. To do this, 

we used a scipy filtfilt zero-phase high-pass filter with a cutoff frequency of 0.001Hz, thus removing signals varying with a timescale 

slower than 16 minutes. We then corrected for motion signals by fitting the 415nm isosbestic to the 470nm signal with a least squares 

polynomial fit of degree 1 (linregress, scipy.stats) and the resulting fitted signal was then subtracted from the 470nm signal. Finally, 

this quantity (ΔF) was normalized through division by the baseline fluorescence (F, defined as a low-pass filtering of the denoised 

470nm signal with a cutoff frequency of 0.001Hz) to obtain ΔF/F which was subsequently z-scored per session to enable more ac

curate comparisons across days of recording.

High data quality was ensured by removing sessions with weak DA signals. We plotted the relative amplitude of the raw 470nm and 

415nm signal per session. If this ratio was smaller than 1 the session was discarded, since in such sessions most of the pre-pro

cessed ΔF/F fluctuations came from variation in the isosbestic signal instead of the informative 470nm channel. We also discarded 

sessions where the maximum fluctuations were smaller than one standard deviation (i.e., Z<1).
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Optogenetic manipulation of dopamine signals

DLS DA inhibition experiment

Mice expressing the inhibitory opsin eOPN341 were trained on the same visual decision-making task described above, following the 

same recovery and habituation protocol. Throughout each day of the experiment, laser pulses (each 600ms, 532nm, ∼12mW 

measured at the tip of the patch cord; Shanghai Dream Lasers Technology) were delivered through the optical fibers in random in

tervals of 6-14s, independent of task trials. Mice were trained for approximately 30 minutes each day for a total of at least 4300 ’good’ 

trials (i.e., after preprocessing, see section below).

DLS DA stimulation experiment

After similar recovery and habituation protocols to those described above, we trained mice expressing the excitatory opsin Chrim

sonR in the DLS dopamine terminals. Upon reaching a stable accuracy above 70%, we began the optogenetic experiment. In alter

nating days, laser pulses (25ms on/25ms off, 635nm, 10mW measured at the tip of the patch cord) were delivered through the optical 

fibers over a period of 490ms at the outcome time of incorrect left (day n) or right (day n+1) choices (including non-rewarded zero- 

contrast trials). This alternation was performed for at least 8 days in each mouse (i.e., at least 4 days for each condition). As a control, a 

similar experiment was performed in expert animals with or without ChrimsonR, replacing laser stimulation with the delivery of a water 

reward. This experiment included a baseline day between manipulation days where mice performed the original task. This was done 

to avoid mice from becoming too biased towards one side. The protocol was run for at least 12 days in each mouse (i.e. at least 3 days 

of each left/right condition). One mouse from the DLS dopamine stimulation cohort expressed the excitatory opsin pAAV-Ef1a-DIO- 

ChRmine-mScarlet (i.e., ChRmine). The surgery was performed similarly to the other mice used for optogenetics, injecting 200nl of 

the virus (titer ∼9×1012 genome copies/ml) into SNc and then implanting optical fibers over DLS. For stimulation, we delivered laser 

pulses (25ms on/25ms off, 532nm, 0.25mW measured at the tip of the patch cord) over a period of 490ms.

DMS DA stimulation experiment

Following the recovery and habituation protocols defined above, we manipulated DMS dopamine levels from naı̈ve while training 

mice expressing ChrimsonR with unilateral DMS fibers on the original task. In a random selection of 75% of trials with the stimulus 

contralateral to the DMS fiber, laser pulses (25ms on/25ms off, 635nm, 10mW measured at the tip of the patch cord) were provided 

over a period of 200ms through the optical fibers, locked to stimulus onset. This stimulation was provided every day of the experiment 

for at least the first 5 days of training.

Video monitoring

The left eye was monitored with a camera (Teledyne Flir CM3-U3-13Y3M-CS) fitted with a zoom lens (Thorlabs MVL50M23) recording 

at 20 Hz. Front body movements were monitored with another camera (same model but different lens, Thorlabs MVL16M23) also 

recording at 20 Hz. Mice were illuminated with infrared light (850nm, BW BWIR48) for the recording of eye and front body movements. 

Moreover, the box was lit by dim visible light so that mouse pupil is moderately dilated.

Histology and fiber track quantifications

Histology was performed after the experiments to confirm successful fiber positioning. Animals were deeply anaesthetized and 

perfused using 4% paraformaldehyde (PFA) and then decapitated. The brains were extracted, left in 4% PFA for 24h to post-fix in 

a refrigerator and then embedded in blocks of 1.5% agarose gel before collecting slices at 70 um thickness using a vibratome (Leica 

VT1000 S). Slices were then stained with DAPI for 15 min (1:1000 solution), mounted onto glass, coverslipped, and imaged using an 

epifluorescence microscope (Leica).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analyses

Behavioral data pre-processing

The behavioral data was pre-processed by removing the following trials: trials with response times more than 2 standard deviations 

above the mean per session, repeat trials (trials repeated after high contrast incorrect trials) and trials where mice did not make a 

choice in less than 30s.

Behavioral metrics

The main behavioral metrics we used to analyze the mouse trajectories were accuracy, psychometric slope and bias. Accuracy was 

defined as the proportion of rewarded choices in all trials except for those without stimuli (i.e., zero-contrast trials), where choices 

were rewarded randomly. Psychometric curves were calculated per session, and plotted the proportion of rightward choices (i.e., 

P(‘Right’)) for different stimulus positions (left, right) and contrast values (0, 0.25, 0.5). The value of psychometric slope we used in 

all our analyses is that of the simplified psychometric curve collapsing across contrast levels to give left stim, zero-contrast and 

right-stim x-axis values. Left (right) slope was defined as the absolute difference in P(‘Right’) for left (right) stimulus and zero-contrast 

trials. Bias was defined as the difference between the P(‘Right’) on zero-contrast trials and 0.5, thus representing the imbalance of 

choices on zero-contrast trials in left and right directions.
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Learning Trajectories

Each mouse was assigned a color and cluster based on its learning trajectory. The rule for assigning colors used a weighted average 

of the difference between right and left per-session slopes over learning, where the weighting was equal to the sum of the left and right 

slopes on each session (Figure S1L). The resulting average slope asymmetry metric was used to determine a color for each mouse on 

a spectrum ranging from purple (for negative values) to orange (for values around 0) to green (for positive values).

The trajectories of the behavioral metrics were smoothed for better visualization, highlighting their slow variation over learning. To 

do this, we used scikit-learn’s Gaussian process regression package70 to fit a gaussian process with an RBF kernel (with tunable 

scaling and length-scale) to the session-by-session metrics. The predict method of the fit gaussian process could then be used 

to estimate the smoothed value of the metric at different time points over learning.

A cluster label was assigned to each mouse to obtain cluster averages that highlighted the main trends in the diversity across 

learning trajectories. A dynamic time warping clustering algorithm was used to obtain these clusters.71 This algorithm first looks 

for the time warping that best clusters the trajectories by shape. The cluster centers are then computed as the barycenters with 

respect to the time warped mouse trajectories, yielding cluster centers that are similar in shape to the individual trajectories, thus 

solving the problem of averaging across mice that learn at different speeds. This clustering was applied to the smoothed right vs. 

left slope trajectories in Figure 1J and the resulting cluster labels were used to compute the cluster averages in all other behavioral 

and neural plots throughout the paper. The same coloring, smoothing, and clustering methods were applied to the model simulations 

to obtain plots similar to those produced for the experimental data.

Pupil analysis

We used DeepLabCut72 to track several points on the mice’s left pupil throughout each task trial. We selected 4 points in the top, 

bottom, left and right portions of each mouse’s pupil and recorded the x and y coordinates of each point over time. For our pupil 

motion analysis (Figure S2B), we defined the average x and y coordinate of these 4 points as the position of the pupil and investigated 

its horizontal (Δx) and vertical (Δy) motion. For the pupil dilation analysis (Figures S2A and S2B), we defined the pupil diameter as the 

mean of the Euclidean distances between the top & bottom and left & right points. The average x and y coordinates, as well as the 

pupil diameter measure, were z-scored and smoothed using a low-pass filter per session to enable more accurate comparisons 

across days. To reduce noise, we excluded sessions where the standard deviation of any of the non z-scored x-coordinates, y-co

ordinates or pupil diameter were above their 75th percentile. The alignment to stimulus onset and time warping was subsequently 

performed as described in the neural analyses section.

Lick analysis

We used FaceMap73 to track the mouth and lower lip key points on videos of the mice’s front body throughout each task trial 

(Figures S2A and S2B). We recorded the x and y coordinate of each key point and defined a mouth-lip (Euclidean) distance measure 

that was used to detect licks. Licks were detected by applying the scipy.signal.find_peaks function to the mouth-lip distance with a 

minimum required prominence of 1. A lick rate measure was subsequently defined using a moving average with a window size of 4, 

and was smoothed per session using a low-pass filter. The alignment to stimulus onset and time warping was subsequently per

formed as described in the neural analyses section.

Wheel movement analysis

Wheel motion was recorded using a rotary encoder acting as the wheel’s axel. The wheel position was saved in mm with a frequency 

of 200Hz, increasing for clockwise motion and decreasing for counterclockwise motion. The recordings were aligned to trial events 

and time warped as described in the neural analyses section.

Neural data analyses

Event alignment and time warping

DLS dopamine recordings were aligned to task events that caused significant DLS dopamine release, as determined by a linear de

convolution (see below). These events were visual stimulus onset, choice completion (i.e., correct trials: visual stimulus arriving in the 

center of the screen, and incorrect trials: stimulus moving out of the screen) and trial outcome (reward/no reward). To do this, a fixed 

time period around each event (-0.5s to +1s) was selected and a fixed number of elements for the resulting aligned neural trace were 

chosen (i.e., 100). The DA recording was then linearly interpolated to obtain a value for each of the desired time points in the chosen 

time period (using scipy.interp1d). The average value in the time period before the event (-0.5-0s) was used as a baseline and sub

tracted from the event-aligned traces.

Time warping was used to visualize DA signals in a single continuous trace including all trial events. This was achieved by warping 

the DA signals such that a fixed number of time points represented the time course between each event. In this way, varying time 

periods between events were accounted for by allowing different time intervals between data points. We chose to have 40 time points 

before stimulus onset, 30 between stimulus onset and choice completion, 12 between choice completion and outcome and 60 post- 

outcome. The recorded DA signal was then interpolated to obtain the fluorescence values at the corresponding time points. This time 

warping allowed us to compute and visualize average DA signals across trials with varying durations.

Normalization across sessions

In addition to the pre-processing steps described above, we further corrected for session-by-session variation in fluorescence levels 

by normalizing the DLS DA signals to the peak of the average DLS DA response to reward delivery in zero-contrast (i.e., no visual 

stimulus) trials. This was done for all analyses except those comparing DLS and DMS DA signals, due to lack of a suitable reference 
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for normalizing the DMS signal. To do this, we computed the average time warped DA trace from zero-contrast trials per session, took 

the mean of the 3 largest values in the post-reward response (peak), and then subtracted the mean fluorescence levels 3 time points 

before and after the time of reward delivery (baseline) to obtain a single number (peak – baseline) that was used to divide the entire 

DA recording from that session by. This normalization assumes that DA reward responses in zero-contrast trials should not vary ses

sion-by-session, as there are no cues that can predict the random reward delivery on these trials, meaning that the degree of ‘sur

prise’ (i.e., reward prediction error) should remain fairly constant throughout learning. This yielded normalized ΔF/F values that 

ranged from 0–1, expressing the signal as a proportion of the zero-contrast reward response in each session, thus resulting in 

more accurate averages across sessions and mice and more interpretable fluorescence values that could be compared with the 

model-derived DA signals.

Analysis windows

We defined average DA responses to 3 events (stimulus onset, choice completion and reward) which we use in several analyses 

throughout the paper. These were defined as the average DA signal in a specific time window after each event, relative to the signal 

before the event.

For the ‘stimulus response’, we defined an analysis window from +0.2s to +0.35s post-stimulus onset and took the peak response 

of a moving average (window size = 10) of the signal in that time window. We then subtracted a baseline fluorescence value (defined 

as the mean ΔF/F in a short window around stimulus onset) from the peak estimate to obtain the ‘stimulus response’ on each trial.

For the DA response to choice completion (‘stim. center’ on correct trials), we used the time warped traces to define the analysis 

windows for the peak and baseline estimates. We did this because the times between stimulus, choice completion and reward de

livery/absence are variable and can be short, so using time warping is an accurate method to obtain isolated estimates of DA release 

values uniquely around this event. To do this, we used the entire 12 elements of the time warped trace between choice complete and 

reward delivery/absence and found the peak value of its moving average (window size = 6). From this, we subtracted the mean of the 

time warped DA signal one time point before and after the choice complete event.

For the DA response to reward delivery/absence we used the same procedure as for the ‘stimulus response’. We only changed the 

analysis window from which we calculated the peak response, i.e., 0-1s after the reward time. The baseline was similarly defined 

using the average signal in a window -0.1s to +0.1s around the event.

For most neural analyses we defined a combined ‘outcome response’ which is the addition of DA responses to choice completion 

and reward delivery/absence. This was done because in rewarded trials, the ‘stim. center’ cue is a perfect predictor of upcoming 

reward and thus rapidly acquires value, causing the DA responses to reward to become smaller. We did not want to include this 

learning process in our analyses as it does not involve decision making (i.e., is Pavlovian). Hence, by adding the responses for the 

two events, we obtained an outcome signal that did not change until events before choice completion became associated with 

reward.

Linear deconvolution

To find the events that caused significant variation in DMS and DLS DA release levels, we used a linear deconvolution algorithm. This 

algorithm works by regressing binary variables indicating the time period around events onto full trial DA signals. The design matrix (X) 

has a column per time point around the events of interest (regressors) and a row per time point of the DA signal, which was concat

enated for all the trials used in the regression to form the dependent variable (y). The algorithm then finds the optimal scaling (β*) of the 

regressors in X which produces a prediction of the concatenated DA signal (ŷ*) that minimizes the mean squared error Σi (yi – ŷi)
2,

β∗ =
(
X

T
X
)− 1

X
T

y; (Equation 1) 

ŷ∗ = Xβ∗ (Equation 2) 

The resulting elements in β* compose the deconvolved signal for each event. The benefits of using linear deconvolution over an 

event-aligned average is that it isolates the effect of each event on the DA signal, removing the influence of other events occurring 

shortly before or after. This isolation is achieved as long as there is enough jitter between events across trials; if two events are sepa

rated by a fixed delay in all trials the regression will not find isolated signals due to correlated regressors.

To account for changing DA signals over learning in our linear deconvolution, we split all trials into 4 bins with increasing psycho

metric slope. We also performed separate regressions for rewarded and unrewarded trials. The events we considered were stimulus 

onset, choice start, choice completion and reward delivery/absence (Figures S3B and S3G). The explained variance for each event 

was computed by comparing the 5-fold cross-validated R2 of a ’full’ model with all the events against that of a model without the 

event being assessed.

We used a custom implementation of this algorithm written in Python, which can be found in our analysis code repository.
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Deep linear RL model

Architecture

The model is a 3-layer deep neural network with linear activation functions (Figure 5A). We denote the weight matrix connecting the 

input layer to the hidden layer W1, and the matrix connecting the hidden layer to the output layer W2, such that the function computed 

by the network is given by

y = W2 W1 x (Equation 3) 

where x is the vector of inputs and y is the vector of outputs. The weights in both W1 and W2 are constrained to be nonnegative, and 

W1 is constrained to be a diagonal matrix. These constraints were chosen for simplicity and are not strictly necessary to capture the 

data. The network has two binary input neurons which encode the presence or absence of the left and right visual stimulus and one 

input neuron that has an activation of 1 for every trial, representing any non-stimulus cues that the mice may use to make choices on 

each trial, e.g. the auditory go cue. Thus, the network receives three different input vectors depending on the trial type,

Left stimulus :

⎡

⎣
1

1

0

⎤

⎦;Zero-contrast :

⎡

⎣
1

0

0

⎤

⎦;Right stimulus :

⎡

⎣
1

0

1

⎤

⎦ (Equation 4) 

We opted not to model the different contrast levels on different trials (25% and 50%) because in most mice we did not see a sig

nificant difference in accuracy between these two levels.

In every trial, the input vectors are multiplied by the weights in W1 and W2 to obtain the activation of the two output neurons which 

encode the learned value of left and right choices, QL and QR. These action values are used to determine choice through a softmax 

function with inverse temperature β that determines the choice probabilities,

P(‘Right’) =
1

1+e− β(QR − QL)
and P(‘Left’) = 1 -- P(‘Right’) (Equation 5) 

from which a choice is sampled on each trial.

For each simulation, the initialization of W1 was sampled from a Gaussian distribution centered on fit values of the initial constant 

input weight μk and stimulus input weights μw0 
(identical for left/right) such that:

W1
init =

⎡

⎣
k 0 0

0 w0 0

0 0 w0

⎤

⎦+ 10− 4N(0;1) (Equation 6) 

where k was sampled from N(μk = 1; 0:1) and w0 was sampled from N(μw0
= 0:05; 0:05) for each tutor-executor simulation, and 

from N(μk = 1; 0:01) and N(μw0
= 0:05; 0:001) for each single-loss simulation. The values of k and w0 were re-sampled if not strictly 

positive, and all weights were reset to their absolute value and the off-diagonal terms to 10− 5 after each update step. This resetting 

was also applied when computing the losses on each step. When investigating the effect of the nonnegativity and connectivity con

straints in Figure S10, this resetting was either not applied or only the constant-pathway off-diagonal terms were reset to 10− 5 for the 

fully-connected stimulus-pathway model.

Similarly, the initialization of W2 was sampled from a Gaussian distribution centered on fit values of the constant pathway weights 

μc0 
(Figure 5A, aqua – all identical) and stimulus pathway weights μs0

(Figure 5A, pink – all identical),

W2
init =

[
c0 s0 s0

c0 s0 s0

]

+ 10− 4N(0; 1) (Equation 7) 

where c0 was set to μc0
= 0 and s0 was sampled from N(μs0

= 0:2; 0:05) for each tutor-executor simulation, and to μc0
= 0 and 

sampled from N(μs0
= 0:7; 0:01) for each single-loss simulation. These values were also re-sampled if not strictly positive. The 

W2 weights were similarly reset to their absolute value when computing the loss and after each update step to enforce the nonne

gativity constraint.

The softmax inverse temperature parameter β and learning rate α were also sampled from a gaussian centered on a value fit to the 

experimental data. More specifically, β was sampled from N(μβ = 9; 1) and α from N(μα = 0:0026; 0:001) for each tutor-executor 

simulation and from N(μβ = 13; 0:01) and N(μα = 0:0015; 0:001) for each single-loss simulation. The fitting procedure is described 

in the corresponding subsection. Simulations were run for 10,000 trials and those that reached 70% accuracy in less than 8,500 trials 

(approximately highest number of trials required for mice to learn) were included in our analyses.

Tutor-executor gradient descent learning rule

We refer to the model presented in Figure 5 as the ‘tutor-executor’ model due to its learning rule, which uses different reward pre

diction errors (RPEs) to train the weights in W1 and W2. The updates minimize three different losses through stochastic gradient 

descent (SGD): the ‘cortical’ loss for the weights in W1, the ‘stimulus cortico-striatal’ loss for the weights in the stimulus pathway 
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of W2 (Figure 5A, pink), and the ‘constant cortico-striatal’ loss for the weights in the constant pathway of W2 (Figure 5A, aqua). Each of 

these losses is a RPE2 comparing predictions based on different subsets of inputs against trial outcome,

‘Cortical’ loss : Ltot =
1
2

δtot2 =
1
2
(Rew − Qch)

2
; (Equation 8) 

‘Stimulus cortico-striatal’ loss : Lstim =
1
2

δstim2
=

1
2

(
Rew − Qstim

ch

)2
; (Equation 9) 

‘Constant cortico-striatal’ loss : Lconst =
1
2

δconst2 =
1
2

(
Rew − Qconst

ch

)2
; (Equation 10) 

where Rew is a binary variable indicating whether the trial was rewarded or not, and the subscript ch indicates the choice made on 

each trial (left/right). Here Qch is the ‘total’ Q-value that uses all inputs to form its predictions, while Qstim
ch and Qconst

ch are ‘partial’ Q- 

values based on the stimulus and constant inputs:

Qch = W1
0;0W2

ch;0 + VSL W1
1;1W2

ch;1 + VSR W1
2;2W2

ch;2; (Equation 11) 

Qstim
ch = VSL W1

1;1W2
ch;1 + VSR W1

2;2W2
ch;2 (Equation 12) 

Qconst
ch = W1

0;0W2
ch;0; (Equation 13) 

where VSL and VSR are the binary inputs indicating the presence or absence of the right and left stimulus respectively and ch used as 

a subscript for the weights is 0 for left and 1 for right choices.

Gradient descent on these losses yields updates which depend on the trial outcome and choice,

ΔW1 = − α
∂Ltot

∂W1
= α

⎡

⎢
⎢
⎢
⎣

W2
ch;0 0 0

0 VSL W2
ch;1 0

0 0 VSR W2
ch;2

⎤

⎥
⎥
⎥
⎦

δtot; (Equation 14) 

ΔW2;stim = − α
∂Lstim

∂W2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

⎡

⎣
0 VSL W1

1;1 VSR W1
2;2

0 0 0

⎤

⎦δstim; if ch = L;

α

⎡

⎣
0 0 0

0 VSL W1
1;1 VSR W1

2;2

⎤

⎦δstim; if ch = R;

(Equation 15) 

ΔW2;const = − α
∂Lconst

∂W2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

⎡

⎣
W1

0;0 0 0

0 0 0

⎤

⎦δconst; if ch = L;

α

⎡

⎣
0 0 0

W1
0;0 0 0

⎤

⎦δconst; if ch = R;

(Equation 16) 

where α is the learning rate and ΔW2 = ΔW2,stim + ΔW2,const. Notice how the updates for W1 are proportional to the total RPE, δtot; the 

updates for the stimulus pathway in W2 are proportional to the stimulus-based RPE, δstim; and lastly, the updates for W2’s constant 

pathway are proportional to the constant-based RPE, δconst. Interestingly, the general tendency of the learning rule is to minimize the 

total ‘cortical’ loss, Ltot, as the learning in W1 tutors downstream learning in W2 by determining the relative salience of the inputs and 

balancing updates in the executor pathways. Shallow versions of this learning rule set the W1 updates to 0.
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Single-loss gradient descent learning rule

This learning rule updates W1 and W2 through stochastic gradient descent (SGD) to minimize a single total RPE2. This corresponds to 

the conventional method of training deep RL networks, where all parameters are updated to minimize a single loss and thus share the 

same objective.74 The loss we use for this learning rule is the same as the ‘cortical’ loss in the tutor-executor network,

Ltot =
1

2
δtot2

=
1

2
(Rew − Qch)

2
; (Equation 17) 

where Rew is a binary variable indicating the outcome of a particular trial and Qch is a reward prediction calculated based on all inputs 

to the network. The updates for W1 and W2 can be written as follows

ΔW1 = − α
∂Ltot

∂W1
= α

⎡

⎢
⎢
⎢
⎣

W2
ch;0 0 0

0 VSL W2
ch;1 0

0 0 VSR W2
ch;2

⎤

⎥
⎥
⎥
⎦

δtot (Equation 18) 

ΔW2 = − α
∂Ltot

∂W2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

⎡

⎣
W1

0;0 VSL W1
1;1 VSR W1

2;2

0 0 0

⎤

⎦δtot; if ch = L;

α

⎡

⎣
0 0 0

W1
0;0 VSL W1

1;1 VSR W1
2;2

⎤

⎦δtot; if ch = R;

(Equation 19) 

where α is the learning rate and VSL and VSR are binary variables indicating the presence or absence of the right and left stimulus 

respectively. Here, all the updates are proportional to the same total RPE, δtot. Shallow versions of this learning rule set the W1 up

dates to 0.

Model-derived dopamine signals

Our neural network model captures empirical dorsolateral striatal dopamine (DLS DA) signals through the weights in its stimulus 

pathway. Over learning, the model reproduces DLS DA outcome responses with a stimulus-based reward prediction error (RPE),

Outcome-time DLS DA≡ δstim = Rew − Qstim
ch (Equation 20) 

This differs from classic temporal difference reward prediction errors (TD-RPEs) commonly used in DA studies in that it does not 

use the full reward prediction based on all inputs to define the RPE, instead comparing trial outcome with a prediction based only on 

the stimulus inputs. This was motivated by our matched accuracy analysis in Figures 2F and 2G, which showed that DLS DA at both 

stimulus and outcome time does not reflect reward predictions based on the constant input (i.e., the absence of a stimulus).

At stimulus time, in accordance with the TD-RPE hypothesis,31 the model captured DLS DA signals with a pre-choice reward pre

diction. Importantly, this prediction is also based only on the stimulus inputs,

Stimulus-time DLS DA≡pstim
L Qstim

L + pstim
R Qstim

R (Equation 21) 

where pstim
L and pstim

R are the left and right choice probabilities determined by the stimulus-based Q-values passed through the choice 

function in Equation 5. Here, there is no need to subtract the value of the previous state as there is no cue before the stimulus that is 

predictive of reward.

To test whether the network could be trained with a learning signal analogous to our DLS DA recordings, the tutor-executor 

network uses a learning rule based on these ‘partial’ prediction errors to update its weights. Specifically, the updates of the W2 stim

ulus pathway weights are proportional to the stimulus-based RPE, δstim (Equation 15). Comparing the evolution of δstim with the DLS 

DA outcome response over learning shows a striking similarity (Figures 5P, S8F, and S8I–S8K), suggesting that a similar dopamine- 

based learning mechanism could be governing the learning process of the mice.

Simulation of the optogenetic experiment

We simulated the optogenetic experiment in the model to investigate the predicted effect on behavior of the tutor-executor and sin

gle-loss gradient descent learning rules undergoing similar manipulations. For the tutor-executor learning rule, the effect of DLS DA 

stimulation was modelled as a ‘reward’ signal provided only to the ‘stimulus cortico-striatal’ loss Lstim. However, for the single-loss 

learning rule the ‘reward’ was provided to the total loss Ltot used to update weights in W2. As for mice, simulated DLS DA stimulation 

was provided to expert one-sided simulations for incorrect left or right choices on alternating days (i.e. 220 simulated trials) for 

10 days (i.e. 5 of each condition). The ‘reward’ signal used to model the stimulation was x0.25 the size of the reward provided by 

water, and a learning rate boost of x103 on incorrect trials was used to reproduce the empirical results. Networks were initialized using 

weights from right-associating average dynamics at expertise.
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We also simulated the incorrect trial water delivery control experiment. As in correct trials, the effect of water delivery on incorrect 

trials was simulated as a global reward signal provided to all the losses used for weight updates in both the tutor-executor and single- 

loss networks. As for mice, incorrect trial water delivery was provided to expert one-sided simulations for incorrect left or right 

choices on alternating days, with a baseline day in between where simulations performed the original task. The alternation was per

formed for 20 days (i.e. 5 days of each left/right condition) for each simulation. A learning rate boost of x5 on incorrect trials with water 

delivery was used to capture the empirical results. Networks were initialized using weights from right-associating average dynamics 

at expertise.

Average dynamics

Deriving the average dynamics of the model allowed us to obtain an analytical description of its learning mechanism. We took the 

continuous time limit of the average gradient descent updates for W1 and W2 from the tutor-executor and single-loss learning rules, 

averaging over trial type (left stim, right stim, or zero-contrast) and choice (left or right). This yielded a 9-dimensional system of 

coupled differential equations describing the evolution of each weight in the network. For sufficiently small learning rates α, this 

‘gradient flow’ limit provides a good description of the average dynamics for both learning rules. The resulting differential equations 

were numerically integrated to obtain average weight trajectories over training time. To capture the three main types of learning tra

jectory (i.e., left-associating, balanced and right-associating), we initialized the integration with a network configuration yielding 

different degrees of initial choice bias (i.e., imbalanced connections from const. to QL and QR). We then overlayed the resulting tra

jectories (thick dashed lines in model figures) on those from trial-by-trial simulations.

The average dynamics of the network weights for the tutor-executor learning rule are governed by three main differential equations; 

one for each of the cortical, stimulus cortico-striatal and constant cortico-striatal weight subsets (black, pink, and aqua in Figure 5A). 

These can be derived by taking the average over trial-types and choices of the gradient descent updates in Equations 14, 15, and 16. 

Doing this for the cortical weights in W1 we obtain

1

α
d

dt
W1 =

〈〈

−
∂Ltot

∂W1

〉

ch

〉

trial

= −

〈〈

δtot ∂δtot

∂W1

〉

ch

〉

trial

= − pVSL

(

pL;VSL

(
1 − QL;VSL

) ∂
(
1 − QL;VSL

)

∂W1

+ pR;VSL

(
0 − QR;VSL

) ∂
(
0 − QR;VSL

)

∂W1

)

− p0

(

0:5pL;0

(
1 − QL;0

) ∂
(
1 − QL;0

)

∂W1
+ 0:5pL;0

(
0 − QL;0

) ∂
(
0 − QL;0

)

∂W1

+ 0:5pR;0

(
1 − QR;0

) ∂
(
1 − QR;0

)

∂W1
+ 0:5pR;0

(
0 − QR;0

) ∂
(
0 − QR;0

)

∂W1

)

− pVSR

(

pL;VSR

(
0 − QL;VSR

) ∂
(
0 − QL;VSR

)

∂W1

+ pR;VSR

(
1 − QR;VSR

) ∂
(
1 − QR;VSR

)

∂W1

)

(Equation 22) 

where t is a continuous time variable counting the number of trials; δtot represents the total RPE; pVSL = pVSR = 0.45 and p0 = 0.1 are the 

probabilities of there being a left vis. stim., right vis. stim., and zero-contrast trial; and lastly pA,B and QA,B indicate the choice prob

abilities and total Q-values for choice A in a trial of type B. The choice probabilities are calculated using the sigmoidal choice rule in 

Equation 5. The partial derivatives of the Q-values can then be expanded by writing them in terms of the network weights (Equations 

11, 12, and 13) and differentiating w.r.t. the W1 matrix.

The same procedure can be followed to find the differential equations for the weights in the stimulus and constant pathways of W2, 

with gradient flow equations

1

α
d

dt
W2;stim =

〈〈

−
∂Lstim

∂W2;stim

〉

ch

〉

trial

= −

〈〈

δstim ∂δstim

∂W2;stim

〉

ch

〉

trial

(Equation 23) 

1

α
d

dt
W2;const =

〈〈

−
∂Lconst

∂W2;const

〉

ch

〉

trial

= −

〈〈

δconst ∂δconst

∂W2;const

〉

ch

〉

trial

(Equation 24) 

The single-loss average dynamics can be derived in a similar fashion, where now all the weights are minimizing the same loss func

tion (Equation 17), yielding the following gradient flow equations

1

α
d

dt
W1 =

〈〈

−
∂Ltot

∂W1

〉

ch

〉

trial

= −

〈〈

δtot ∂δtot

∂W1

〉

ch

〉

trial

(Equation 25) 

1

α
d

dt
W2 =

〈〈

−
∂Ltot

∂W2

〉

ch

〉

trial

= −

〈〈

δtot ∂δtot

∂W2

〉

ch

〉

trial

(Equation 26) 

which can be expanded as exemplified with the tutor-executor dynamics.
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Saddle Points

Saddle points in the model’s learning dynamics provide an explanation for the systematic transitions between behavioral strategies 

and dopamine release patterns observed in the mice. We used the average dynamics derived in the sections above to demonstrate 

the existence of these saddle points. We first made informed guesses at stationary points by looking for network configurations 

where the average dynamics go to 0, and then investigated the dynamics around these points to verify their nature. These derivations 

can be found in the Mathematica notebooks tutor_executor_fixed_points.nb and single_loss_fixed_points.nb from the paper’s asso

ciated code repository.

We also provide evidence for heteroclinic orbits connecting the saddle points, represented by the arrows in Figures 7A and S9B. To 

do this, we used the string method75 to find the minimal energy path between each pair of saddle points. This allowed us to distin

guish between points that are directly connected by such paths (i.e., heteroclinic orbits), and points that are only connected through 

another one of the saddle points. The orbits discovered by the string method are shown in the Mathematica notebooks, and their 

schematic form is shown in Figures 7A and S9B.

Fitting procedure

To reproduce the learning trajectories in the data with our model, we fit the mean value of the network weights at initialization (see 

Equations 6 and 7) and the β parameter of the choice function (Equation 5). Specifically, we fit the initial mean W1 weights for the 

constant μk and stimulus inputs μw0
(equal for left/right), the initial mean W2 weights for the constant μc0 

and stimulus pathways μs0 

(all equal within each pathway) and the mean value of the inverse temperature μβ.

To do so, we took advantage of our expressions for the average dynamics of both the tutor-executor and single-loss learning rules. 

We integrated the average dynamics of networks initialized with different values of the mean initial weights, of the inverse temperature 

μβ and with a small amount of left, right or no initial bias ε in the constant-pathway W2 weights (i.e. W2
1;0 = W2

0;0 + ε, ε was also fit when 

non-zero) until 73% accuracy. We then compared the resulting behavioral and neural trajectories with the left-assoc., right-assoc. 

and balanced trajectory clusters from the data (from Figures 1J–1M and 2D).

The fitting procedure minimized the mean squared error between each trajectory measure for the three behavioral and neural clus

ters emerging from integrating the average dynamics and the three trajectory clusters from the data using momentum-based gradient 

descent on the parameters. The optimization was performed using a chained optimizer from the JAX-based optax module with optax. 

clip(1), optax.adabelief(learning_rate=1e-3) and optax.keep_params_nonnegative(). We started the optimizer with 5 different initial 

parameter settings sampled randomly from a suitable range for each parameter. We then ran the optimization for 1000 iterations, 

finally selecting the parameter combination with the lowest mean squared error. This method using the average dynamics proved 

faster than with simulations. Lastly, the learning rate α was fine-tuned by hand to obtain learning trajectories that were stable and 

learned in a similar number of trials as the mice.

The resulting parameter values were used as the means of Gaussians (with variances set manually to reproduce similar patterns of 

diversity as observed in mice) from which the parameters of each simulated network were sampled for the simulations shown in the 

figures across the paper (see Equations 6 and 7). Further, the resulting parameters (including ε) were also used as initialization for the 

trajectories derived from integrating the average dynamics shown as dashed thick lines across the paper.

Generalization to larger networks

To investigate whether the learning principles we identified in small networks generalize to larger, more conventional neural networks, 

we trained such networks on our behavioral task (Figure S10). First, we improved the faithfulness of the model to the mice’s perceived 

environment by replacing the one-hot encoding of the stimulus inputs with a pixel-level representation of the screen presented to the 

mice. We used a downsampled version of the 1280x1024 gray screen with a Gabor stimulus presented at an x-offset of +/-423 pixels 

from the center with a frequency of 0.01348 cycles/pixel and a Gaussian envelope with variance 98.69 pixels2 in both the x- and y-di

rections. Second, we increased the number of neurons in each layer and the number of layers while maintaining the connectivity 

pattern of the smaller network (i.e., one-to-one input channels, fully-connected stimulus pathways or a completely fully-connected 

network). Third, we introduced a non-linear activation function (i.e. ReLU) to further improve the faithfulness of the model to brain 

networks. The output of the large networks remained as the same as the small network: two Q-values represented by single neurons, 

which were subsequently fed to a softmax function to determine the probability of each choice. A complete depiction of the large 

network architectures can be found in Figures S10G–S10I. The networks were trained with the single-loss gradient descent learning 

rule, i.e., minimizing the total loss Ltot, as implementing the tutor-executor learning rule in deeper multi-layer networks is outside the 

scope of this study. We kept the nonnegativity constraint as we found it to work best for the smaller network.

For each simulation, the large networks were initialized with a similar effective network to the smaller one-to-one network (set to the 

fit values of W1 and W2 from before). More specifically, the weights in the first and last layers were sampled from Gaussians with 

variances set to the fit values from the small network (negative weights clipped to 0), and weights in intermediate layers were initial

ized small. For fully-connected networks, the cross-connections were also initialized small (except where we explicitly investigated 

manipulating their magnitude). The softmax inverse temperature parameter β and learning rate α were also sampled from a gaussian 

centered on the value fit to the experimental data for the smaller network. The fitting procedure is described in the corresponding 

subsection. Simulations were run for 10,000 trials and those that reached 70% accuracy in less than 8,500 trials (approximately high

est number of trials required for mice to learn) were included in our analyses.
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Single-state Q-value model

To investigate the origin of the diverse early biases across mice, we fit a simple State-Action-Reward-State-Action (SARSA) model to 

mouse choices in the first 5 days of training (Figure S1Q). The model had two Q-values for the left and right choices (QL and QR) in

dependent of trial type (i.e., with a single state). Each Q-value was defined as the sum of an innate (fixed per mouse) choice tendency 

for each of the choices (Qinnate), a choice tendency that changes day-by-day (Qday, one for each day), and a choice tendency that is 

shaped by reward history (Qrew):

QL=R = Qinnate
L=R + Q

day(n)

L=R
+ Qrew

L=R (Equation 27) 

where n indicates the day (from 1 to 5) corresponding to each trial. The choice probabilities on each trial were determined by passing 

the resulting left and right Q-values through a softmax function with inverse temperature parameter β, as for the paper’s main model. 

However, unlike the models above, the choice on each trial was taken from the mice’s choice history. Based on this choice, Qrew was 

updated on each trial using the regular SARSA update with two learning rates α+/-:

ΔQrew
ch = α+= −

(
Rew: − Qrew

ch

)
(Equation 28) 

where the Q-value corresponding to the choice (Qch) was updated using α+ and a reward signal Rew.=1 on trials where the mice were 

rewarded, and α- with Rew.=0 for when they were not.

We performed a nested model comparison by removing different combinations of the Q-value components (innate, day and rew) 

and fitting each model variation to each mouse’s choice and reward history data. The values of Qinnate, Qday(1-5), β and α+/- were fit per 

mouse for each version of the model by simulating the Q-value trajectories for each parameter setting, and minimizing the resulting 

log-likelihood of the mouse’s choices (based on the model-derived choice probabilities on each trial) with momentum-based pro

jected gradient descent (optax.adam, run for 5000 iterations with learning rate 0.001 and parameters clipped to 0 on each update 

step if they go negative). Finally, the Bayesian Information Criterion (BIC) for each model variation fit to each mouse’s data was 

computed.

Software packages

All data analyses were performed using custom code written in Python 3 using standard analysis and plotting libraries: numpy, scipy, 

scikit-learn, matplotlib and seaborn. For the model, the JIT compilation and automatic differentiation capabilities of JAX were used to 

accelerate and simplify gradient calculations. Fitting was performed using the JAX-based optax module. PyTorch was used to define 

and train the large networks. A modified version of Rigbox (CortexLab) running on MATLAB 2019a was used for recording behavioral 

data and Bonsai was used for neural recordings and optogenetic stimulation. Fiber tracts were estimated from histology using the 

allenCCF toolbox (CortexLab) for MATLAB.

Statistics

The sample sizes are higher than sample sizes typically used in the field, due to the study’s emphasis on individual variability. No 

statistical methods were used to determine sample size. Trial types (i.e., stimulus side and contrast level) were randomly determined 

by a computer program during behavior. Details of all statistical analyses are provided in the figure legends. Analyses were performed 

using custom code written in Python 3 using standard analysis libraries: numpy, scipy, statsmodels. The statistical parameters of 

each analysis are reported in figure captions.
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Supplemental figures 

Figure S1. Learning a visual decision task from naive to expert, related to Figure 1

(A) The temporal structure of the task within a trial. Words in regular font indicate trial events, words in italics are labels for the traces in the timing diagram, and the 

solid vs. dashed style of the traces indicate fixed vs. variable time periods respectively. The duration of each labeled time period is provided in the STAR Methods. 

(B) Histogram of the number of days that mice required to reach 70% accuracy. 

(C) Histogram of the number of trials that mice required to reach 70% accuracy. 

(legend continued on next page) 
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(D) Chronometric curve over quartiles per mouse (gray) and averaged across all mice (black). RT (Z scored) indicates the mean Z scored RT (time from stimulus 

onset to choice completion) per contrast value. For each mouse, the Z score was computed by first finding the mean RT per contrast across trials in each day, 

these values were subsequently standardized across days and contrast values and finally averaged across days in each quartile. Error bars indicate ± SEM 

across mice in all panels, unless specified differently. 

(E) Measures of general RTs (averaged across trials independent of stimulus contrast and side), reward rate, the ratio of RTs on zero-contrast trials and trials with 

stimuli, and accuracy over the first 30 days of learning. First plot, Z scored RTs (across all trial types) over training days per mouse (gray) and averaged across all 

mice (black/red). Red dots indicate data points significantly different from day 1 averages (p < 0.05, estimated via two-sided t test), and the red arrow indicates the 

first day this occurs. Z scoring was performed by standardizing each mouse’s mean RT per day using data from all its days. Second plot, reward rate over training 

days, calculated as the choice accuracy divided by the mean (not Z scored) RT for each day. Influenced by the decrease in RTs, the reward rate also became 

significantly different from the first day on day 4. Third plot, the ratio of the average (non-Z scored) RTs measured in zero-contrast trials to the average RTs in left 

and right stimulus trials. On day 7, the RTs were significantly faster in trials with stimuli, compared with zero-contrast trials. Fourth plot, accuracy over training 

days. The accuracy only significantly surpasses chance level on day 9. For all measures, only days with more than 90 trials were considered in the analysis. 

(F) Similar analysis to (E), visualized selectively for one-sided mice over the first days of learning until significance for each variable was reached. A measure of the 

average zero-contrast bias over days was also included. Further, the RT ratio was changed to plot the ratio of RTs on trials with non-associated stimuli (including 

zero-contrast) vs. associated stimuli. This demonstrates that choice biases emerged before mice learned to associate stimuli with choices to make faster 

decisions. 

(G) Chronometric curves for the same mice and days as in Figure 1D. Error bars indicate ± SEM across trials in each day. 

(H) Expert day chronometric curves per mouse (thin) and averaged per trajectory cluster (thick). Cluster labels for each mouse were obtained from Figure 1J. The Z 

scored RT was defined as in (D). 

(I) Z scored RT over trials per mouse (thin) and for the 3 clusters from Figure 1J with left- and right-associating mice combined into a single group (thick dashed). 

The Z scored RT was defined as in (E). Number of trials limited to 6,000. 

(J) Scatter of average right vs. left psychometric slopes in expert days for each mouse. Stroke color indicates the average slope asymmetry of each mouse. The fill 

of the left/right half of each circle (black/white) indicates the statistical significance of the left/right slopes (i.e., whether the mean P(‘‘Right’’) for left/right stimulus 

trials is significantly different from that of zero-contrast trials, assessed with a Bernoulli statistic, black means significant at 95% i.e., Bernoulli statistic >1.96 or 

<− 1.96). 

(K) Scatterplot of expert day right vs. left psychometric slopes, colored by the average slope asymmetry of the mouse trajectory they belong to. 

(L) Color scheme (left), scatter (middle), and histogram (right) of average psychometric slope asymmetry per mouse. Slope asymmetry was calculated as 0.5 times 

the weighted average of the difference in R-L slopes over all days in a mouse’s learning trajectory. The weightings in the average are the sum of both R+L slopes 

per day. 

(M) Scatter of average right vs. left chronometric slopes in expert days for each mouse. Chronometric slopes are defined as the difference between the median RT 

on zero-contrast trials and trials with right/left stimuli. 

(N) Bar plots showing the average bias and slope difference in early (4–8) and late (final 5) days for each mouse, colored by average psychometric slope 

asymmetry. 

(O) Top, accuracy over days per non-learner mouse (gray) and averaged across all non-learner mice (black). Dashed lines indicate chance level (black) and 70% 

accuracy level (blue). Number of days limited to 30. Bottom, psychometric curve over quartiles per mouse (gray) and averaged across all mice (black). In all 

panels, error bars indicate ± SEM across mice. 

(P) In clockwise order from top left, right vs. left slope; difference in right and left (R-L) slope vs. bias; bias vs. accuracy; and R-L slope vs. accuracy across days per 

non-learner mouse. Trajectory colors obtained from the average slope asymmetry as in (L). 

(Q) Results from a simple SARSA model assessing the effect of innate biases, day-by-day tendencies, and reward-driven promotion of each choice. The model 

was fit to choice data from the first 5 days of training. Left, the BIC of each model in a nested model comparison selectively removing different combinations of 

model parameters. Arrows indicate the two model variations with the lowest BIC. Right, for each model variation, a count of the number of mice whose choice 

data had the lowest BIC for that variation compared with others. Arrows indicate the two model variations with the largest number of mice.
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Figure S2. Eye movement and lick analyses, related to Figure 1

(A) Left, example video frames showing the key points used to analyze eye and lick data. Right, time warped measures of ipsilateral pupil diameter (top) and lick 

rate (bottom) on correct (green) vs. incorrect (red) trials of balanced mice where the previous trial was rewarded. Naive days are defined as the first 5 days of each 

mouse, and expert days have accuracy n.s. smaller than 0.7. Shaded bar shows the analysis window used for the bar plot insets. p values calculated using two- 

sided t test. 

(B) Top, average vertical and horizontal eye movements (pupil motion) aligned to stimulus onset in one-sided and balanced mice for correct trials with stimuli 

ipsilateral (cyan) and contralateral (fuchsia) to the pupil, as well as on zero-contrast rewarded trials (gray). In one-sided mice, solid lines indicate pupil motion in 

response to ‘‘associated’’ stimuli and dashed lines to ‘‘non-associated’’ stimuli. Bottom, time warped measures of ipsilateral pupil diameter (top) and lick rate 

(bottom) for correct trials with associated (black solid) and non-associated (black dashed) stimuli, as well as rewarded zero-contrast trials where the associated 

(gray solid) and non-associated (gray dashed) choice was made. Only trials that directly follow a rewarded trial are plotted. For one-sided mice, naive days are 

defined as the first 3 days and for balanced mice as the first 5 days (like in A). Expert days have accuracy n.s. smaller than 0.7 for both groups. Shaded bar shows 

the analysis window used for the bar plot insets. n.s., p > 0.05, *p < 0.05, **p < 0.005, and ***p < 0.0005, respectively.
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Figure S3. DA signals in DLS and DMS during task learning, related to Figure 2

(A) The locations of DLS optic fiber implants estimated from post-mortem histological examinations overlaid on a brain slice schematic. 

(B) Top, regression coefficients from a linear deconvolution of DLS DA signals for different events in a trial: stimulus onset, choice start, choice completion, and 

outcome (reward/no reward). The deconvolution uses the time points around each event as categorical regressors and then finds the least squares regression 

coefficients predicting the original signal. 25% and 50% contrast trials were pooled together, as done for analyses throughout the paper. The data were divided 

into correct and incorrect trials and were grouped into four bins of increasing psychometric slope. The linear deconvolution was performed independently for each 

subset of data. The resulting deconvolved signals were baselined using the average signal in the 0.2 s before each event. Bottom, R2 for each trial event used in 

the linear deconvolution, calculated independently for correct and incorrect trials and for each level of psychometric slope. 

(C) Wheel position (positive for contralateral and negative for ipsilateral movements) and simultaneous DLS DA recordings aligned to stimulus onset in expert days 

(accuracy n.s. smaller than 0.7) of one-sided mice with fiber implants ipsilateral (left column) and contralateral (right column) to the associated stimulus, as well as 

balanced mice (middle column). Data are shown for correct trials with 0.4 < RT < 0.6 s with stimuli ipsilateral (cyan) and contralateral (fuchsia) to the recording 

(legend continued on next page) 
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fiber, as well as rewarded zero-contrast trials. Trials were further split by whether the choice made was ipsilateral (solid) or contralateral (dashed) to the fiber. 

Shaded region indicates the time period in which rewards were delivered. In all panels, error bars indicate ± SEM across mice. 

(D) Wheel position (mm, absolute value i.e., non-directional) and simultaneous DLS DA recordings aligned to stimulus onset in expert one-sided days with 

matched accuracy on trials with associated and non-associated stimuli. Data are shown for correct trials with 0.4 < RT < 0.6 s with associated (black solid) and 

non-associated (black dashed) stimuli, as well as rewarded zero-contrast trials where the associated (gray solid) or non-associated (gray dashed) choice was 

made. As in (C), shaded region indicates the time period in which rewards were delivered. 

(E) Trial-wise stimulus-aligned DLS DA recordings from 4 example expert days of an example balanced mouse (only correct trials with reward delivery <1.5 s after 

stimulus onset), grouped by the contrast of the stimulus presented on the trial (pooling left and right stimuli) and sorted by RT within each contrast group. Blue line 

indicates the time of stimulus onset, green and light blue dots indicate the time of choice completion and reward delivery respectively. 

(F) The locations of DMS optic fiber implants estimated from post-mortem histological examinations overlaid on a brain slice schematic. 

(G) Same linear deconvolution analysis as in (B), now applied to DMS DA signals across learning. For the DMS DA deconvolution analysis, trials were further 

subdivided into whether the stimulus was presented ipsilateral (cyan) or contralateral (fuchsia) to the recording fiber due to the pronounced effect of stimulus 

laterality on this signal.
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Figure S4. DLS DA signals during learning across mice, related to Figure 2

(A) Average time warped DLS DA signals across mice in each cluster, plotted over quartiles for correct trials with stimulus on the left (red) and right (blue), cf. 

Figure 2C. In order from left to right, vertical dashed lines indicate stimulus onset, stimulus-in-the-center, and reward delivery time. Insets show average psy

chometric curves across mice in each cluster for every quartile. Unless specified otherwise, error bars ± SEM across mice in all panels. 

(B) Average stimulus and outcome DLS DA responses over days in correct trials for the three example mice from Figures 1D and 2C. Error bars indicate ± SEM 

across trials. Data points fit with a 3rd degree spline to visualize trend (scipy.interpolate.UnivariateSpline), cf. Figure 2D. 

(C) Average chronometric curve across days 1–3 averaged across mice in each cluster. The Z score was computed per mouse by computing the mean RT per 

contrast across trials in each day, standardizing these values across contrast values and days, and finally averaging across days. p values calculated using two- 

sided paired t test. 

(D) Average chronometric curve across days > 3 with accuracy n.s. greater than 0.5, averaged across mice in each cluster. p values calculated using two-sided 

paired t test. 

(legend continued on next page) 
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(E) Quantification of DLS DA signals from Figure 2E. Left, bar plots showing average DLS DA stimulus responses across mice in each cluster for correct trials in 

days 1–3, days >3 with accuracy n.s. greater than 0.5 and expert days (accuracy n.s. smaller than 0.7). p values calculated using two-sided paired t test. Right, 

same as left but for outcome responses. 

(F) Top, average Z scored RTs in zero-contrast trials over first 30 days of training per mouse (gray) and averaged across all mice (black/red). Red dots indicate data 

points significantly different from day 1 averages (p < 0.05, estimated via two-sided t test). Z scoring was performed by standardizing each mouse’s mean zero- 

contrast RT per day using data from all its days. Bottom, average DLS DA stimulus responses in zero-contrast trials (average 0.2–0.35 s after the stimulus would 

have been presented, i.e., 0.2 s before the auditory go cue) over days. 

(G) Top left, average stimulus-aligned DLS DA signals in correct trials from days with accuracy n.s. greater than 0.5 of one-sided animals. Solid and dashed black 

lines show signals in trials with associated and non-associated stimuli respectively. Solid and dashed gray lines show signals on zero-contrast trials (aligned to the 

time when the stimulus would have been presented, i.e., 0.2 s before the auditory go cue) for choices in (solid) and opposite (dashed) to the direction of each 

mouse’s early bias. Bottom left, average time warped DLS DA signals. Top right, quantification of average DLS DA stimulus responses. Bottom right, the sum of 

average DLS DA responses to stimulus and outcome. p values calculated using two-sided paired t test. 

(H) Measures of general RTs, reward rate, zero-contrast bias, the ratio of RTs on trials without and with associated stimuli, the difference in the average DLS DA 

stimulus responses with and without associated stimuli and the accuracy over the initial days of learning for one-sided mice with DLS DA recordings. Data points 

are shown per mouse (gray) and averaged across all mice (black/red). Red dots indicate data points significantly different from day 1 averages (p < 0.05, 

estimated via two-sided t test). Data points for each measure are shown until significance was reached, indicated with a red arrow. 

(I) Stimulus-aligned DLS DA signals in correct trials of the first day of training. No stimulus responses were significantly greater than 0 (p > 0.05; one-sample two- 

sided t test). 

(J) Top, for one-sided mice in days with matched accuracy for trials with left and right stimulus, in clockwise order from top left, average accuracy across trial 

types; bar plots with sum of average DLS DA stimulus and outcome responses in correct trials; regression of difference in R-L psychometric slopes (left) and 

choice accuracy in R-L stimulus trials (right) against difference in DLS DA responses to R-L stimuli in correct trials. Each point in the regressions represents a 

matched accuracy day, and the p value is calculated from the exact distribution of r. Shaded region indicates 95% confidence interval. Bottom, for one-sided 

mice, scatterplot of average DLS DA stimulus responses against accuracy in associated (solid) and non-associated (dashed) stimulus trials. Each point rep

resents a day. Data points fit with a 3rd degree spline to visualize trend (scipy.interpolate.UnivariateSpline). 

(K) Similar analysis to that in (J) reproduced for balanced mice. n.s., p > 0.05, *p < 0.05, **p < 0.005, and ***p < 0.0005, respectively.
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Figure S5. DA signals during learning, split by stimulus type, RTs, and trial outcome, related to Figure 2

(A) Average DLS DA stimulus-aligned signals (top), time warped signals (middle), and bar plots with average DLS DA stimulus responses (bottom) for rewarded 

trials from each quartile of an example mouse with bilateral implants, split by stimulus laterality with respect to the implanted fiber. Error bars indicate ± SEM 

across days. p value calculated from two-sided paired t test. 

(B) Same as (A) for increasing psychometric slope values of all mice, also split by stimulus laterality with respect to the implanted fiber. In all panels, error bars 

indicate ± SEM across mice, unless specified differently. 

(C) Average DLS DA stimulus-aligned signals (top), time warped signals (middle) and bar plots with average DLS DA stimulus responses (bottom) in rewarded 

trials for increasing RT values in expert days (accuracy > 0.7) of one-sided mice split by trials with the associated (solid) or non-associated stimulus (dashed). p 

value calculated from two-sided paired t test. 

(legend continued on next page) 
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(D) Same as (C) for balanced mice. 

(E) Average DLS DA stimulus-aligned signals (top), time warped signals (middle), and bar plots with average DLS DA stimulus responses (bottom) across all mice 

for increasing psychometric slope and a fixed RT range (1–3 s) split by correct and incorrect trials. n.s., p > 0.05, *p < 0.05, **p < 0.005, and ***p < 0.0005, 

respectively.
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Figure S6. DA signals in highly expert mice and quantification of DLS and DMS DA responses to task events during learning, related to 

Figures 2 and 3

(A) Psychometric curves, average DLS DA stimulus responses and outcome responses in correct trials of highly expert (accuracy 80%–95%) balanced (top) and 

one-sided (bottom) mice trained with shaping, more contrast levels and more extensive training. 

(B) Cf. Figure 2B, accuracy over days and simultaneous trial-wise stimulus-aligned DMS DA recordings from an example mouse (only correct trials with stimulus 

contralateral to the recording fiber and reward delivery <5 s after stimulus onset). Blue lines indicate the time of stimulus onset (left) and a 5-trial moving average of 

the time when the stimulus is brought to the center (i.e., choice completion, right). 

(C) Average time warped DLS and DMS DA signals in correct trials with stimulus on the left (red) and right (blue) for 4 example days of an example balanced mouse 

with bilateral DLS/DMS recordings. Average psychometric curves on each day shown as insets. Vertical dashed lines indicate stimulus onset, stimulus center, 

and reward delivery time. Error bars indicate ± SEM across trials. 

(D) Average time warped DMS DA signals in correct trials with stimulus ipsilateral (cyan) and contralateral (fuchsia) to the recording fiber for 4 example days of an 

example one-sided mouse with bilateral DMS recordings. 

(legend continued on next page) 
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(E) Average time warped DLS and DMS DA signals on days with small (<0.05) and large (>0.2) psychometric slope in correct trials with stimulus ipsilateral (cyan) 

and contralateral (fuchsia) to the recording fiber, as well as zero-contrast trials (gray). 

(F) Cf. Figure 2I, bar plots showing average DLS and DMS DA stimulus responses across mice for correct trials in days 1–3, days >3 with accuracy n.s. greater 

than 0.5 and expert days (accuracy n.s. smaller than 0.7). In all panels, error bars indicate ± SEM across mice, unless specified differently. p values calculated 

using two-sided paired t test. 

(G) First day of training time warped DLS and DMS DA signals in correct trials with contralateral/ipsilateral stimulus, as well as zero-contrast trials. Average first- 

day psychometric curves shown as insets. No stimulus responses were significantly different from zero-contrast trial responses (p > 0.05; one-way ANOVA). 

(H) Schematic, behavioral and DLS (top) and DMS (bottom) DA results of the reward size manipulation experiment (STAR Methods). Left, schematic showing the 

alternating day structure of the experiment. Middle left, average psychometric curves on days with high reward in correct right stimulus (blue) and left stimulus 

(red) trials. Middle right, average time warped DLS and DMS DA signals in correct trials with associated stimulus (only contralateral for DMS) separated by reward 

size. Right, bar plots quantifying stimulus and outcome DA responses. p values calculated using two-sided paired t test. Error bars indicate ± SEM across mice. 

DMS stimulus responses for low and high reward are n.s. different both when two-sided t test is performed over mice and over days. 

(I) Regression of early difference in DLS DA responses to R-L stimuli (average across days 4–8) against late difference in DLS DA responses (average across final 

5 days of training). Each point represents a mouse. p value calculated from the exact distribution of r. Shaded region indicates 95% confidence interval. 

(J) Average difference in DLS DA responses to right and left stimuli (R-L) and difference in DLS DA rewarded outcome responses after R-L stimuli in early days 

(4–8) and late days (final 5) for each mouse, cf. Figure S1N for behavioral data. Colors come from average psychometric slope asymmetry (see Figure S1L). 

(K) Difference in DLS DA responses to rewarded outcomes after right and left stimulus (R-L) over days per mouse (thin) and for the 3 clusters from Figure 1J (thick). 

Number of days limited to 25, cf. Figure 3A. 

(L) Difference in DLS DA responses to rewarded outcomes after R-L stimulus vs. bias, cf. Figure 3D. 

(M) Difference in DLS DA responses to rewarded outcomes after R-L stimulus vs. accuracy, cf. Figure 3E. 

(N) Average DLS DA stimulus-aligned signals (top), time warped signals (middle) and bar plots with average DLS DA stimulus responses (bottom) across all mice 

for increasing RT values and a fixed psychometric slope range (>0.325), split by correct and incorrect trials. p values calculated using two-sided paired t test. Error 

bars indicate ± SEM across mice. n.s., p > 0.05, *p < 0.05, **p < 0.005, and ***p < 0.0005 in all panels.
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Figure S7. Further quantification of DLS DA optogenetic results, related to Figure 4

(A) Left, the locations of DLS optic fiber implants of eOPN3 mice estimated from post-mortem histological examinations overlaid on a brain slice schematic. Right, 

example histology slice showing fiber tract (white arrow) and eOPN3 opsin expression (STAR Methods). 

(B) Chronometric curve over quartiles for individual eOPN3 mice (green, thin), averaged across eOPN3 mice (green, thick) and averaged across all the other mice 

that were trained on the task for at least 4,300 trials (black). In all panels, error bars indicate ± SEM across mice. For each mouse, the Z score was computed by 

first finding the mean RT per contrast across trials in each day, these values were subsequently standardized across days and contrast values, and finally 

averaged across days in each quartile. 

(C) Measures of general RTs, the ratio of RTs on zero-contrast trials and trials with stimuli and accuracy over the first 30 days of training. First plot, Z scored RTs 

(across all trial types) over training days averaged across eOPN3 (green) and all other trained mice (black). Arrows indicate the first data points that were 

significantly different from day 1 averages (p < 0.05, estimated via two-sided t test). Z scoring was performed by standardizing each mouse’s mean RT per day 

using data from all its days. Second plot, the ratio of the average (non Z scored) RTs measured in zero-contrast trials to the average RTs in left and right stimulus 

trials. Third plot, accuracy over training days. For all measures, only days with more than 50 trials were considered in the analysis. 

(D) Left, the locations of DLS optic fiber implants of ChrimsonR mice estimated from post-mortem histological examinations overlaid on a brain slice schematic. 

Right, example histology slice showing fiber tract (white arrow) and ChrimsonR opsin expression (STAR Methods). 

(E) Cf. Figure 4G, average chronometric curves (left) and a bar plot of their differences (right) for the mice and manipulations used in the ChrimsonR optogenetic 

(and water delivery) experiment. Z scored RTs defined as in (B). Only trials with RT < 12 s were analyzed for the stimulation experiment, and RT < 5 s were analyzed 

for the water delivery experiment. 

(F) Cf., Figure 4G, average difference in psychometric curves with stimulation/water delivery in incorrect trials with the associated and non-associated stimuli (i.e., 

assoc. − non-assoc.) for mice in which both the ChrimsonR DLS stimulation and reward delivery experiments were performed (n = 3).
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Figure S8. The deep tutor-executor network accounts for mouse behavior and DA signals throughout learning, related to Figures 5 and 6

(A) Cf. Figure S1N, the model’s average bias and slope difference early in training (average across trials 1,000–2,000) and late in training (average across final 

1,000 trials) for each simulation. Colors come from average psychometric slope asymmetry of each simulation (see Figure S1L). 

(B) Cf. Figure S1C, histogram of the number of trials that simulations required to reach 70% accuracy. 

(C) Cf. Figure 1B, accuracy over trials per simulation (gray) and averaged across all simulations (black). Dashed lines indicate chance level (black) and 70% 

accuracy level (blue). Number of trials limited to the average simulation length. 

(D) Cf. Figure 1C, psychometric curves over quartiles per simulation (gray) and averaged across all simulations (black). In all panels, error bars indicate ± SEM 

across simulations unless specified differently. 

(E) Cf. Figure 1D, left, psychometric curves from 3 example simulations over quartiles throughout learning. Right, per simulation (thin) and average expert 

psychometric curves (acc. > 70%) clustered by trajectory type (thick). Cluster labels for each simulation obtained from Figure 5G, colors obtained from average 

psychometric slope asymmetry. 

(F) Cf. Figure 2D, in order from left to right columns: average stimulus-based (i.e., model-derived DLS DA signals), constant-based and total predictions and RPEs 

over deciles in correct trials with stimulus on the left (red) and right (blue) for the three clusters from Figure 5G. Points show simulation averages and thick dashed 

lines show average dynamics. 

(G) Cf. Figure S6I, regression of early difference in model-derived DLS DA responses to R-L stimuli against late difference in model-derived DLS DA stimulus 

responses. Each point represents a simulation. p value is calculated from the exact distribution of r. Shaded region indicates 95% confidence interval. 

(legend continued on next page) 
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(H) Cf. Figure S6J, the average difference in model-derived DLS DA responses to right and left stimuli (R-L) and difference in model-derived DLS DA rewarded 

outcome responses after R-L stimuli early in training (average across trials 1,000–2,000) and late in training (average across final 1,000 trials) for each simulation. 

Colors come from average psychometric slope asymmetry. 

(I) Cf. Figure S6K, difference in model-derived DLS DA responses to rewarded outcomes after R-L stimuli over trials per simulation (thin) and for the 3 clusters from 

Figure 5G (thick). Number of trials limited to 5,000. 

(J) Cf. Figure S6L, difference in model-derived DLS DA responses to rewarded outcomes after R-L stimulus vs. bias. Stationary points here and in (K) are plotted 

using the average behavior and model-derived DLS DA arising from their corresponding weight configurations. 

(K) Cf. Figure S6M, difference in model-derived DLS DA responses to rewarded outcomes after R-L stimulus vs. accuracy. 

(L) Comparison between the stationary points of a shallow (left column) and deep (right column) version of the tutor-executor network. Note that 0 is not a 

stationary point of the shallow network and is placed in the left panel for reference. The shallow network has three stationary points which have different network 

configurations to those of the deep network. They are hence labeled with the increasing numbers 5L, 5R, and 6, accompanied by schematics of their associated 

behavior and neural predictions. These correspond to states where the shallow network is only making left choices (5L), right choices (5R), and the global 

optimum (6). 

(M) Comparison of the accuracy over trials for simulations from a shallow (top) and deep (bottom) version of the tutor-executor network. Thin gray lines show the 

accuracy curves for each simulation, and the thick black line indicates the average across simulations. 

(N) Comparison between the stationary points of a shallow (left column) and deep (right column) version of the single-loss gradient descent network. 

(O) Comparison of the accuracy over trials for simulations from a shallow (top) and deep (bottom) version of the single-loss gradient descent network. The learning 

curve of both deep models better captures mice data (cf. Figure 1B) than the shallow models.
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Figure S9. Deep RL network trained with single-loss gradient descent captures behavioral trajectories with a teaching signal different from 

DLS DA, related to Figure 7

(A) Schematic of the deep linear ‘‘single-loss’’ deep RL network architecture and learning rule (STAR Methods). 

(B) Schematic of the stationary point structure with behavioral predictions as well as corresponding network weight configurations. The connecting lines with 

arrows represent the steepest heteroclinic orbits into/out of each stationary point (STAR Methods). All the stationary points are saddle points except for 4, which is 

the global minimum. 

(C) Cf. Figure 1F, bias over trials per simulation (thin), for the 3 clusters from (G) (thick), and for the average dynamics (thick dashed). Here, and in (E) and (K), the 

number of trials is limited to 4,667. Thick dashed lines in all panels indicate analytical trajectories derived from the average dynamics (STAR Methods). 

(D) Cf. Figure 1G, regression of early bias (average across trials 1,000–2,000) against late bias (average across final 1,000 trials). Each point represents a 

simulation. p value calculated from the exact distribution of r. In all panels, shaded regions indicate 95% confidence interval across mice. 

(legend continued on next page) 
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(E) Cf. Figure 1H, difference between right and left psychometric slopes over trials per simulation (thin) and for the 3 clusters from (G) (thick). 

(F) Cf. Figure 1I, regression of early bias against late slope difference. Each point represents a simulation. p value calculated from the exact distribution of r. 

(G) Cf. Figure 1J, right vs. left slope over trials per simulation (thin) and for 3 clusters (thick). Clusters and colors obtained using the same procedure as for the 

behavioral data in Figure 1J. The clusters from this analysis are used in all other panels. Stationary points here and in (H)–(J) are plotted using the average behavior 

arising from their weight configurations. 

(H–J) Cf. Figures 1K–1M, in order, difference in right and left (R-L) slope vs. bias, R-L slope vs. accuracy and bias vs. accuracy over trials per simulation (thin) and 

for the 3 clusters from (G) (thick). 

(K) Cf. Figure 3A, difference in total RPE signals after right and left stimuli (R-L) over trials per simulation (thin) and for the 3 clusters from (G) (thick). 

(L) Cf. Figure 3B, regression of early stimulus-evoked total RPE (average across trials 1,000–2,000) against late slope difference (average across final 1,000 trials). 

Each point represents a simulation. p value calculated from the exact distribution of r. 

(M–P) Cf. Figures 3C–3F, in order, right vs. left stim.-evoked total RPEs; difference in total RPE evoked by right and left stimuli (R-L) vs. bias; difference in total RPE 

evoked by right and left stimuli (R-L) vs. accuracy; and outcome-evoked total RPE signals after right stimulus vs. after left stimulus per simulation (thin) and for the 

3 clusters from (G). Stationary points are plotted using the average total RPEs arising from their weight configurations.
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Figure S10. Exploring model constraints and generalization to larger networks, related to Figure 5

(A) Top, schematic of a tutor-executor network with one-to-one connections in W1. Bottom, right vs. left slope (cf. Figure 1J) and difference in right and left slope 

(R-L) vs. bias (cf. Figure 1K) over trials per simulation for simulations with (left) and without (right) the nonnegativity constraint applied to the network weights. 

Trajectory colors obtained from the average slope asymmetry as in Figure S1L. All simulations (n = 40) are depicted regardless of whether they reach expertise (i. 

e., acc. > 70%). Simulations were initialized as in Figure 5 (see STAR Methods). 

(B) Same as (A) for a tutor-executor network with cross-connections between the stimulus inputs in W1. 

(C) Same as (A) and (B) for a fully connected tutor-executor network. 

(D–F) Same analysis as in (A)–(C) applied to a network trained with the single-loss gradient descent learning rule. Simulations were initialized as in Figure S7 (see 

STAR Methods). 

(G) Left, mermaid diagram of a scaled-up non-linear version of the one-to-one network with segregated fully connected channels for each input which merge only 

in the final layer. Right, right vs. left slope and difference in right and left slope (R-L) vs. bias over trials per simulation trained with the single-loss gradient descent 

(legend continued on next page) 
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rule and the nonnegativity constraint applied to the network weights. Trajectory colors obtained from the average slope asymmetry as in Figure S1L. Only 

simulations that reached 70% accuracy in less than 8,500 trials are depicted. Simulations were initialized such that the effective weights in each channel were as 

in Figure S7 (see STAR Methods). 

(H) Same as (G) for a scaled-up non-linear version of the network with cross-connections only between the stimulus inputs. 

(I) Same as (G) and (H) for a scaled-up version of the fully connected network.
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Figure S11. Effect of non-uniform input representations, stimulus pathway cross-connections, and the trajectories of simulations that did 

not reach expertise, related to Figures 5 and 7

(A–D) Effect of fixing W1 to values from the average network configuration of right-associating simulations from Figure 5. Only simulations that reached expertise 

(i.e., acc. > 70%) from n = 40 simulations are shown. Simulations are from tutor-executor networks where the W1 update is set to 0. Trajectory colors obtained 

from the average slope asymmetry as in Figure S1L. 

(A) Cf. Figure 1J, right vs. left slope over trials per simulation. 

(B) Cf. Figure 1K, difference in right and left slope (R-L) vs. bias. 

(C) Cf. Figure 1G, regression of early bias (average across trials 1,000–2,000) against late bias (average across final 1,000 trials). Each point represents a 

simulation. In all panels, shaded regions indicate 95% confidence interval across simulations. 

(D) Cf. Figure 1I, regression of early bias against late slope difference. Each point represents a simulation. 

(legend continued on next page) 
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(E–H) Effect of varying the relative magnitude of W1 stimulus pathway cross-connection to diagonal weights at initialization. Same figures as in (A)–(D) for 

simulations with fixed seeds for the generated stimulus/reward sequence, softmax choice rule and initialization weights, but with different variances for the 

Gaussians from which the cross-connection weights are sampled. 

(I) Cf. Figure 3C, right vs. left model-derived DLS DA stimulus responses over trials per simulation. Only simulations that reached expertise (i.e., acc. > 70%) are 

shown. Simulations are from large single-loss gradient descent networks. 

(J and K) Cf. Figure S1P, slope difference vs. bias and bias vs. accuracy over trials of tutor-executor simulations that did not reach accuracy ≥70% in less than 

8,500 trials from a total of n = 120. Simulations were initialized as in Figure 5. Numbered circles represent stationary points of the learning dynamics (see Figure 7) 

plotted using the average behavior arising from their corresponding weight configurations.
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Figure S12. Comparison of DMS and DLS DA signals and effect of DMS DA optogenetic stimulation, related to Figures 2 and 4

(A) Average stimulus-aligned DA signals for mice with simultaneous DLS and DMS recordings that associated the stimulus contralateral to the DMS fiber. Average 

is across correct trials with the stimulus contralateral (ipsilateral) to the DMS (DLS) fiber. 

(B) Average stimulus response over first 10 days of learning for the same trials and mice as in (A) (see analysis window). 

(C) Schematic explaining the optogenetic experiment using the excitatory opsin ChrimsonR in DMS, alongside example histology slice showing fiber tract (white 

arrow) and opsin expression (STAR Methods). 

(D) Change from day 1 in the probability of making the choice contralateral to the stimulation fiber, i.e., P(‘‘Contra’’), over 5 stimulation days. 

(E) Boxplot of day 5 ΔP(‘‘Contra’’). Each point is a mouse. p value calculated using two-sided one-sample t test against 0, excluding interquartile range (IQR) 

outlier.
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Figure S13. Tutor-executor learning rule causes transfer to striatum, related to Figure 7

(A) W1 weights from naive to expert in examples of right- (top), balanced (middle), and left-associating (bottom) average dynamics of the tutor-executor network 

(same as dashed trajectories in Figure 5). Right- and left-associating trajectories were obtained by initializing the average dynamics with a small degree of left and 

right bias, whereas the balanced trajectory comes from a network initialized without bias (STAR Methods). 

(B) W1 weights from naive to expert from the average dynamics of the single-loss gradient descent network (same as dashed trajectories in Figure S9). 

(C) Left, stimulus- and constant-pathway Q-values (derived from the product of elements in W1 and W2, see STAR Methods) of the average dynamics of the tutor- 

executor network from naive to overtrained. Overtrained: trained 8 times longer than the training used for naive to expert. We do not plot the Q-values of the 

‘‘incorrect’’ associations (i.e., left stimulus with right choice and right stimulus with left choice) as these remain around 0. Right, W1 and W2 weights from naive to 

overtrained. Again, we do not plot the weights that connect the inputs with the wrong choices as these remain around 0. 

(D) Similar to (C) but for the single-loss gradient descent network.
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