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The proper functioning of living organisms relies on a series of 
spatiotemporally orchestrated cellular and subcellular activi-
ties. Observing and recording these phenomena are consid-

ered to be the first step toward understanding them. Fluorescence 
microscopy, combined with the growing palette of fluorescent 
indicators, provides biologists with a practical tool capable of good 
molecular specificity and high spatiotemporal resolution. Recent 
advances in fluorescence imaging have brought us insights into 
various previously inaccessible processes, ranging from nanoscale 
organelle interactions1–3 to pan-cell footprints during embryo devel-
opment4–6 and whole-brain neuronal dynamics synchronized with 
certain behaviors7–10.

Among the challenges of fluorescence microscopy, poor imaging 
signal-to-noise ratio (SNR) caused by limited photon budget stands 
in the central position. The causes of this photon-limited challenge 
are manifold. First, the low photon yield of fluorescent indicators 
and their low concentration in labeled cells result in a lack of pho-
tons at the source11. Second, although using higher excitation power 
is a straightforward way to increase fluorescent photons, living sys-
tems are too fragile to tolerate high excitation dosage. Extensive 
experiments have shown that illumination-induced photobleaching, 
phototoxicity and tissue heating will disturb crucial cellular pro-
cesses, including cell proliferation, migration, vesicle release, neu-
ronal firing and so on12–19. Third, recording fast biological processes  

necessitates high imaging speed, and short dwell time further exac-
erbates the shortage of photons. Fourth, the quantum nature of pho-
tons makes the stochasticity (shot noise) of optical measurements 
inevitable20,21. The intensity detected by photoelectric sensors follows 
a Poisson distribution parameterized with the exact photon count22. 
In fluorescence imaging, detection noise dominated by photon shot 
noise aggravates the measurement uncertainty and obstructs the 
visualization of underlying structures, potentially altering morpho-
logical and functional interpretations that follow. To capture enough 
photons for satisfactory imaging sensitivity, researchers have to sac-
rifice imaging speed, resolution and even sample health20,23.

Comprehensive efforts have been invested to increase the 
photon budget of fluorescence microscopy, from designing 
high-performance fluorophores11,24–26 to upgrading the excitation 
and detection physics20,27–29 and developing data-driven denois-
ing algorithms23,30–33. We previously developed DeepCAD, a deep 
self-supervised denoising method for calcium imaging data, which 
effectively suppresses the detection noise and improves imaging 
SNR more than tenfold without requiring any high-SNR observa-
tions33. A single low-SNR calcium imaging sequence can be directly 
used as the training data to train a denoising convolutional neural 
network (CNN).

Here, with advancements in methods and applications, we pres-
ent DeepCAD-RT, a versatile self-supervised denoising method 
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A fundamental challenge in fluorescence microscopy is the photon shot noise arising from the inevitable stochasticity of 
photon detection. Noise increases measurement uncertainty and limits imaging resolution, speed and sensitivity. To achieve 
high-sensitivity fluorescence imaging beyond the shot-noise limit, we present DeepCAD-RT, a self-supervised deep learn-
ing method for real-time noise suppression. Based on our previous framework DeepCAD, we reduced the number of network 
parameters by 94%, memory consumption by 27-fold and processing time by a factor of 20, allowing real-time processing on 
a two-photon microscope. A high imaging signal-to-noise ratio can be acquired with tenfold fewer photons than in standard 
imaging approaches. We demonstrate the utility of DeepCAD-RT in a series of photon-limited experiments, including in vivo 
calcium imaging of mice, zebrafish larva and fruit flies, recording of three-dimensional (3D) migration of neutrophils after acute 
brain injury and imaging of 3D dynamics of cortical ATP release. DeepCAD-RT will facilitate the morphological and functional 
interrogation of biological dynamics with a minimal photon budget.
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for fluorescence time-lapse imaging with real-time processing 
speed and improved performance. DeepCAD-RT inherits the 
self-supervised concept of splitting adjacent frames into inputs 
and corresponding targets to train a CNN33. By pruning redun-
dant features inside the network architecture, we constructed a 
lightweight network and compressed the model parameters by 
94%, which consequently reduced 85% processing time and 70% 
memory consumption. Meanwhile, we augmented the training 
data by 12-fold to alleviate the data dependency and make the 
method still tractable with a small amount of data. We show that 
such a strategy of combining model compression and data aug-
mentation eliminates overfitting and makes the training process 

stable and manageable. Finally, we optimized the hardware deploy-
ment of DeepCAD-RT and achieved an overall improvement of a 
27-fold reduction in memory consumption and a 20-fold accel-
eration in inference speed, which ultimately supported real-time 
image denoising once incorporated with the microscope acqui-
sition system. We demonstrate the capability and generality of 
DeepCAD-RT on a series of photon-limited imaging experiments, 
including imaging calcium transients in various model organisms, 
such as mice, zebrafish and flies, observing the migration of neutro-
phils after acute brain injury and monitoring cortical neurotrans-
mitter dynamics using a recently developed genetically encoded  
ATP sensor34.
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Fig. 1 | Optimization and real-time schedule of DeepCAD-RT. a, Model simplification by feature pruning. The total number of model parameters was 
reduced from ~16.3 million (16,315,585) to ~1.0 million (1,020,337) for higher processing speed and less memory consumption. b, Performance comparison 
between DeepCAD and DeepCAD-RT. Deployment optimization refers to hardware acceleration by further optimizing the deployment of deep neural 
networks on GPU cards. An example image sequence of 490 × 490 × 300 (x-y-t) pixels was partitioned into 75 patches (150 × 150 × 150 pixels with 40% 
overlap) to obtain these performance measurements on the same GPU (GeForce RTX 3090, Nvidia) with one batch size. In total, ~2.53 × 108 pixels flowed 
through the network. All hyperparameters remained the same except the method. The red dashed line on the right indicates the imaging time (~9.6 s) of 
the example data; GB, gigabytes. c, Real-time schedule of DeepCAD-RT. The continuous data stream acquired from the microscope acquisition software 
was packaged into 3D (x-y-t) minibatches and fed into DeepCAD-RT. To maximize the processing speed, three parallel threads were programmed for 
image acquisition, data processing and display, respectively. For each batch, half of the overlap was discarded to avoid marginal artifacts. Overlapping 
frames between two consecutive batches are rendered with overlapping colors. d, Schematic of real-time denoising implemented with DeepCAD-RT 
on a two-photon microscope. Raw noisy data and the corresponding denoised data are displayed synchronously, which will be saved as separated files 
automatically at the end of the imaging session.
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Results
Comprehensive optimization of DeepCAD-RT for real-time pro-
cessing. Limited by the computationally demanding nature of deep 
neural networks, the throughput of most deep learning-based meth-
ods for video processing is lower than the data acquisition rate35. 
To the best of our knowledge, no deep learning-based denoising 
methods for fluorescence imaging have been demonstrated to have 
real-time processing capability in practice. The original DeepCAD 
was proposed to denoise calcium imaging data in postprocessing. 
For the same amount of data, its processing time is about five times 
longer than the acquisition time. In this work, our rationale was to 
provide a compact and user-friendly tool that can be incorporated 
into the data acquisition pipeline to enhance the raw noisy data 
immediately after acquisition, which serves as the last step of data 
acquisition and the first step of data processing. Toward this goal, 
we started the first round of optimization by simplifying the net-
work architecture (Fig. 1a). We compressed the network by pruning 
different proportions of network parameters and then investigated 
their performance using synthetic calcium imaging data simulated 
with neural anatomy and optical microscopy (NAOMi)36. Synthetic 
calcium imaging data have paired ground-truth images that are 
indispensable for rigorous comparison (Supplementary Fig. 1). 
Quantitative evaluation shows that although we removed as many 
as ~94% (from 16.3 million to 1.0 million) network parameters, 
the denoising performance did not deteriorate (Supplementary 
Fig. 2), while the memory cost and inference time were reduced 
by 3.3-fold and 6.6-fold, respectively, which pushed the processing 
throughput of the network to the same level as imaging (Fig. 1b). 
However, unlike denoising in postprocessing, real-time processing 
requires frequent data exchanges and necessitates extra computa-
tional resources for display and interaction. A practical processing 
throughput should be two to three times higher than imaging to 
reserve reasonable design margins. For further acceleration, we 
performed the second round of optimization in hardware deploy-
ment by implementing simplified models with TensorRT (Nvidia), 
a toolbox that provides optimized deployment of deep neural net-
works on specific graphics processing unit (GPU) cards. On our 
task, the deployment optimization reduced the memory cost and 
inference time by 8.2-fold and 3-fold, respectively. Combining 
model simplification and deployment optimization, the overall 
improvement is a 27-fold reduction in memory consumption and 
a 20-fold improvement in inference speed (Fig. 1b), making the 
implementation of real-time denoising possible.

To incorporate DeepCAD-RT into the data acquisition pipe-
line of the microscopy system, we designed three parallel threads 
for imaging, data processing and display (Fig. 1c). The continu-
ous data stream captured by the microscope will be packaged into  

consecutive batches in the imaging thread and seamlessly fed into 
the processing thread. Once a new batch is received by the process-
ing thread, the pretrained model already deployed on the GPU 
starts processing, and the denoised batch will be passed to the dis-
play thread. After removing overlapping frames, denoised batches 
will be assembled into a denoised stream and displayed on the 
monitor. The three threads keep temporally aligned throughout the 
whole imaging session. Both the raw noisy data and denoised data 
will be saved as separated files once the imaging session finishes. 
As a proof of concept, we demonstrate real-time denoising on a 
two-photon fluorescence microscope using DeepCAD-RT (Fig. 1d  
and Extended Data Fig. 1). The denoised data with drastically 
enhanced SNR can be presented simultaneously with the raw data 
(Supplementary Video 1), which facilitates the observation and 
evaluation of biological dynamics under photon-limited conditions.

Besides real-time denoising, we also optimized the training 
procedure to make DeepCAD-RT easy to harness in various bio-
logical applications. We introduced 12-fold data augmentation 
(Extended Data Fig. 2) to reduce its data dependency. Currently, 
training the network with a low-SNR video stack containing as 
few as 1,000 frames is sufficient to ensure satisfactory performance 
(Supplementary Fig. 3). Moreover, we found that the combination 
of model simplification and data augmentation can effectively sup-
press overfitting (Extended Data Fig. 3), which was an inherent 
problem of self-supervised training and required human inspec-
tions for model selection previously33. We compared DeepCAD-RT 
with Noise2Void37 and Hierarchical DivNoising (HDN)38 and a 
supervised baseline (Methods), which shows that DeepCAD-RT 
performs very close to the supervised baseline and is much bet-
ter than Noise2Void and HDN (Supplementary Figs. 4 and 5) 
because of its ability to integrate spatial and temporal correlations 
through the 3D architecture. We also compared DeepCAD-RT with 
DeepInterpolation, another recently developed denoising method 
leveraging interframe correlations32. The results indicate that, with 
the same amount of training data, DeepCAD-RT substantially out-
performed DeepInterpolation, especially under photon-limited 
conditions (SNR < 5 dB). However, DeepCAD-RT can achieve 
comparable performance with tens of times less training data 
(trained from scratch with 6,000 frames) than DeepInterpolation 
(pretrained with 225,000 frames and then fine-tuned with 6,000 
frames; Supplementary Figs. 4 and 5). The high data efficiency 
of DeepCAD-RT enables it to be extended to other applications 
beyond calcium imaging (Supplementary Fig. 6). In most cases, 
the data at hand can be directly used for training without requir-
ing additional large-scale training datasets. Another advantage of 
DeepCAD-RT is that its processing speed can be at least an order 
of magnitude higher than DeepInterpolation even with the same  

Fig. 2 | Universal denoising of calcium imaging in mice, zebrafish and Drosophila. a, Imaging calcium transients in dendritic spines of a mouse expressing 
genetically encoded GCaMP6f calcium indicator. One example frame is shown for the low-SNR raw recording (top), DeepCAD-RT denoised recording 
(middle) and synchronized high-SNR recording with tenfold fluorescence photons (bottom). Magnified views of the yellow boxed region show calcium 
dynamics of two spatially adjacent dendritic branches. Each frame was integrated for 33 ms to ensure high temporal resolution. Red arrowheads point 
to a mushroom spine, and yellow arrowheads point to a stubby spine; scale bars, 20 μm for the whole FOV and 5 μm for magnified views. b, Box plots 
showing image correlations along three dimensions (x-y-t) before and after denoising. The high-SNR data with tenfold fluorescence photons were used 
as the reference for correlation computing; x-y slice, N = 6,000; y-t slice, N = 246; x-t slice, N = 489. c, Time-lapse imaging of calcium dynamics of optic 
tectum neurons in the zebrafish brain (HuC:GCaMP6s). Top, the original low-SNR data. Middle, DeepCAD-RT enhanced data. Bottom, high-SNR recording 
with tenfold photons. Magnified views show the neural activity of the yellow boxed region in a short period. Each frame was integrated for 66 ms; scale 
bars, 20 μm for the entire FOV and 5 μm for magnified views. d, Pearson correlations of image slices along three dimensions before and after denoising; 
x-y slice, N = 6,000; y-t slice, N = 246; x-t slice, N = 246. e, Intensity profiles of the yellow dashed line in c. Pixel intensities were extracted from twofold 
downsampled images, and all traces were smoothed by moving average with a 3-pixel kernel to suppress the noise; AU, arbitrary units. f, Denoising 
performance of DeepCAD-RT on calcium imaging of Drosophila mushroom bodies (GCaMP7f). The same frame is shown for the original low-SNR data 
(left), DeepCAD-RT denoised image (middle) and high-SNR image with tenfold fluorescence photons (right). Magnified views show snapshots of the 
yellow boxed region at three moments. Each frame was integrated for 33 ms; scale bars, 10 μm for the whole FOV and 5 μm for magnified views. g, Box 
plots showing the improvement of image correlation after denoising; x-y slice, N = 12,000; y-t slice, N = 241; x-t slice, N = 335. Asterisks denote significance 
levels tested with one-sided paired t-test; ****P < 0.0001 for all comparisons.
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network complexity and computational device because DeepCAD-RT 
outputs the entire three-dimensional (3D) stack from the 3D 
input, while DeepInterpolation just outputs a single frame from  
the 3D input.

Denoising calcium imaging on multiple model organisms. 
Although synthetic data can provide ground-truth images that 
are not experimentally available, the performance of denoising 
methods should be quantitatively evaluated with experimentally 

obtained data for best reliability. Motivated by this principle, we 
captured synchronized low-SNR and high-SNR image pairs with 
our custom-designed two-photon microscope (Extended Data  
Fig. 4) for each type of experiment. The low-SNR data were used 
as the input, while the synchronized high-SNR data with tenfold 
fluorescence photons were used for result validation (Extended 
Data Fig. 5). A standard two-photon microscope was also inte-
grated into our system for cross-system validation and multicolor  
imaging.
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To demonstrate the capability and generality of our method, we 
first investigated whether it could be applied to various calcium 
imaging experiments. We began by imaging calcium transients of 
postsynaptic dendritic spines in cortical layer 1 (L1) of a mouse 
expressing genetically encoded GCaMP6f39. Technically, calcium 
imaging of dendritic spines over a large field-of-view (FOV) is par-
ticularly challenging because of their small sizes40. Each spine is 
usually characterized by as few as several pixels, and noise severely 
contaminates its spatiotemporal features. After we enhanced the 
original low-SNR data with our method, the image SNR was sub-
stantially improved, and postsynaptic structures can be clearly 
resolved even in a single frame (Fig. 2a and Supplementary Video 2).  
Without noise contamination, the morphological heterogeneity 
between mushroom spines and stubby spines became discernable. 
Because different spine classes have different functions during 
development and learning41, revealing spine morphology is help-
ful for the study of dendritic computing. For quantitative evalu-
ation, we extracted image slices along three dimensions (x-y-t) 
and calculated image correlations with corresponding high-SNR 
images. Statistical analysis shows that image correlations can be 
significantly improved for all three dimensions after denoising  
(Fig. 2b), manifesting the spatial and temporal denoising capability 
of our method.

Animal models currently used in systems and evolutionary neu-
roscience are diverse and extend from jellyfish42 to monkeys43. To test 
our method on versatile animal models with different neuron mor-
phologies and brain structures, we imaged in vivo calcium dynam-
ics in the brains of zebrafish larvae and Drosophila and denoised 
the original shot-noise-limited signals with our method. For zebraf-
ish imaging, we used larval zebrafish expressing nuclear-localized 
GCaMP6s calcium indicator throughout the whole brain. Because 
of the shot noise, raw images deteriorated severely, and neurons 
can be barely recognized. However, after denoising, the image SNR 
was massively improved, and fluorescence signals became clear  
(Fig. 2c and Supplementary Video 3). Image correlations along all 
three dimensions were significantly improved (Fig. 2d). In each 
frame, the distribution of optic tectum neurons can be clearly recog-
nized with the enhancement of our method (Fig. 2e). Additionally, 
we also imaged calcium events of large neuronal populations span-
ning multiple brain regions and found that the removal of noise 
was rather helpful for separating densely labeled cells. (Extended 
Data Fig. 6 and Supplementary Video 4). Similarly, we performed 
time-lapse calcium imaging of mushroom body neurons in the 
brains of adult Drosophila. The results showed that the enhanced 
imaging SNR and image correlations could facilitate the observa-
tion of calcium dynamics (Fig. 2f,g and Supplementary Video 5), 
which verified the effectiveness of our method on various calcium 
imaging applications involving different animal models and neu-
ronal structures. Because smaller animals such as zebrafish and 

Drosophila are less resistant to high excitation power than mice, it 
is difficult to keep the sample healthy and obtain high-SNR imag-
ing data simultaneously. With its good performance and versatil-
ity, DeepCAD-RT can be a promising tool for calcium imaging to 
minimize the excitation power and photon-induced disturbance by 
removing shot noise computationally.

Observing neutrophil migration in vivo with low excitation 
power. Our previous work only focused on calcium imaging, in 
which neurons are spatially invariant and their intensity changes 
over time. Next, we applied our method to the observation of cell 
migration, a complementary task with almost temporally invari-
ant intensity and continuously changing cell positions. Neutrophils 
are the most abundant white blood cells in immune defense44. To 
fully understand the function of neutrophils, intravital imaging 
with minimal illumination is essential because phototoxicity and 
photodamage would alter cellular and subcellular processes, which  
potentially disturb normal immune responses16,45. We first evalu-
ated the performance of our method on cell migration observations 
qualitatively and quantitatively with synchronized low-SNR and 
high-SNR (tenfold photons) image pairs captured by our custom-
ized system. The results showed that DeepCAD-RT can restore 
neutrophils of different shapes from noise and the evolution of 
morphological features over time (Fig. 3a–c and Supplementary 
Video 6). Because the SNR of denoised data is better than high-SNR 
data with tenfold photons, the illumination power can be equiva-
lently reduced more than tenfold for linear microscopy and more 
than threefold for two-photon microscopy. For better comparison, 
we show the kymographs (x-t projections) of marked regions. The 
migration of neutrophils could be visualized directly in denoised 
data rather than submersed in noise in low-SNR raw data (Fig. 3d). 
Quantitative evaluation also indicated that denoised data are more 
correlated to high-SNR data (Fig. 3e). Additionally, the substantial 
improvement of image SNR after denoising prompted us to investi-
gate whether our method could reveal more cellular traits if it took 
high-SNR data as the input. After training and inference with the 
high-SNR data, we found that higher input SNR could produce 
much better denoising results. The dynamics of retraction fibers 
during neutrophil migration could be visualized after the enhance-
ment of our method (Fig. 3f and Supplementary Video 7).

For fluorescence microscopy, denoising is the first step of sub-
sequent data processing and downstream biological analysis. A 
good denoising method can facilitate cell segmentation, localiza-
tion and classification, which are fundamental steps for the study 
of cell migration. To figure out the improvement our method brings 
to segmentation, we segmented neutrophils from the original noisy 
images (both low-SNR and high-SNR) and corresponding denoised 
images using Cellpose46 and Stardist47, two recently published meth-
ods for cellular segmentation with state-of-the-art performance48. 

Fig. 3 | Observing 3D migration of neutrophils in the mouse brain in vivo. a, Low-SNR images of neutrophil migration without denoising. b, Images 
denoised with DeepCAD-RT. c, Synchronized high-SNR images with tenfold fluorescence photons. Blue arrowheads point to the elongated tail of a 
migrating neutrophil. Magnified views of the yellow boxed region showing the morphological evolution of neutrophils in a 60-s time window. Red closed 
lines annotate the border of a neutrophil during migration. Neutrophils were labeled with a fluorescent-conjugated Ly-6G antibody. Each frame was 
integrated for 100 ms, and the entire time-lapse imaging session lasted 644 s; scale bars, 50 μm for the whole FOV and 10 μm for magnified views. 
d, x-t slices along the yellow dashed line in c of low-SNR raw data (left), DeepCAD-RT denoised data (middle) and corresponding high-SNR data 
with tenfold fluorescence photons (right); scale bars, 20 μm for x and 50 s for t. e, Box plots showing Pearson correlations of image slices along three 
dimensions (x-y-t) before and after denoising; x-y slice, N = 6,440; y-t slice, N = 512; x-t slice, N = 512. P values were calculated by one-sided paired t-test; 
****P < 0.0001 for all comparisons. f, Denoising high-SNR data with DeepCAD-RT reveals subcellular dynamics of neutrophils. Retraction fibers are 
indicated with arrowheads; scale bar, 10 μm. g, Three-dimensional imaging of neutrophil migration in a 150 × 150 × 30 μm3 volume (15 planes) after acute 
brain injury. The raw noisy volume (left) and corresponding denoised volume (right) are visualized from the same perspective. Acute brain injury was 
induced by craniotomy. Neutrophils were labeled with a fluorescent-conjugated Ly-6G antibody (green channel). Blood vessels were stained with a WGA 
(magenta channel) dye. Because blood vessels are stationary, noise in the magenta channel was removed by averaging multiple frames; scale bar, 50 μm. 
h, Images of a single plane before (top) and after (bottom) denoising. DeepCAD reveals diffusion of the neutrophil population. Magnified views of yellow 
boxed regions are shown next to each image; scale bars, 50 μm for the entire FOV and 10 μm for magnified views.
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We enlisted five expert human annotators to manually label cell 
borders and obtain ground-truth masks through majority voting 
(Methods). Using intersection-over-union (IoU) score as the met-
ric, the segmentation performance of the two methods could be 
improved by ~30-fold for low-SNR images (Extended Data Fig. 7). 
For high-SNR images with tenfold fluorescence photons, we also 
observed a substantial improvement for both methods because shot 
noise was removed, and cell structures could be well recognized 
after denoising.

The migration of neutrophils is coordinated in 3D. Deciphering its 
spatiotemporal pattern necessitates volumetric imaging. Using our 
multicolor two-photon microscope, we imaged a 150 × 150 × 30 μm3 
volume in the mouse brain after acute brain injury induced by cra-
niotomy. The volume rate of the entire imaging session was 2 Hz. 
Fluorescence signals from neutrophils and blood vessels were 
recorded simultaneously and merged into multicolor images post 
hoc. To minimize the interference caused by the excitation laser and 
record the native pattern of neutrophil migration, the excitation  
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power we used was below 30 mW. Because the fluorescence labeling 
of neutrophils was only localized to their membranes, the concen-
tration of the fluorophore was low. The SNR of the raw data was 
very low, and cell structures and dynamics could not be visual-
ized because of the contamination of shot noise (Fig. 3g). After we 
denoised these low-SNR raw data with our method, shot noise was 
effectively suppressed, and the 3D dynamics of neutrophil migra-
tion became explicit (Supplementary Video 8), which unveiled the 
phenomenon that a cluster of neutrophils congregating in the early 
stage of inflammation diffused over time (Fig. 3h).

DeepCAD-RT facilitates the recording of neurotransmitter 
dynamics. With the recent proliferation of different fluorescent 
indicators, combining fluorescence microscopy and genetically 
encoded fluorescent indicators has become a widespread meth-
odology for interrogating the structural, functional and metabolic 
mechanisms of living organisms49. For the nervous system alone, 
available activity indicators have gone beyond calcium and already 
extended to other intracellular and extracellular neurotransmit-
ters, including dopamine50,51, GABA (γ-aminobutyric acid)52, glu-
tamate53,54, acetylcholine26,55 and so on. Similar to calcium imaging, 
shot noise is also a restriction for the imaging of other activity sen-
sors, which reduces the image SNR and limits in vivo characteriza-
tion and applications. To investigate whether our method can be 
extended to neurotransmitter sensors, we took an ATP sensor as an 
example and recorded cortical ATP release using mice expressing 
GRABATP1.0 (ref. 34), a recently developed genetically encoded sen-
sor for measuring extracellular ATP (Methods). In the low-SNR 
raw data, shot noise swamped ATP signals (Fig. 4a). After denois-
ing with our method, these release events were clearly visualized  
(Fig. 4b,c and Supplementary Video 9). Kymographs (y-t projec-
tions) showed that some subtle ATP release events that could be 
omitted in the raw data become visible (Fig. 4d–f). Quantitatively, 
we used corresponding high-SNR images as the ground truth to cal-
culate image correlations along all three dimensions and found that 
image correlations could be significantly improved after denoising 
(Fig. 4g). To compare ATP traces before and after denoising, we 
manually annotated 80 firing sites from the heat map of peak ΔF/F0 
(Fig. 4h) and extracted fluorescence traces representing ATP activ-
ity over time. We calculated Pearson correlations between all traces 
and the ground truth (traces extracted from the high-SNR data). 
Statistical results showed that the signals of ATP release can be 
effectively enhanced, and the correlations of all fluorescence traces 
are improved, benefiting from the removal of noise (Fig. 4i).

Previous studies on in vivo imaging of ATP release were restricted 
in two-dimensional (2D) planes34,56. To fully unveil the spatiotempo-
ral distribution and evolution pattern of ATP release in 3D tissues, 
we performed volumetric imaging of a 350 × 350 × 60 μm3 tissue 
volume in the mouse brain after laser-ablated injury. The injury 
site was located at the center of the volume. Because inflammation 
and injury can trigger the release of endogenous ATP, phototoxicity 
and photodamage caused by the excitation laser should be mini-
mized to avoid undesired disturbance. Thus, we kept the excitation 

power below 40 mW and imaged the 3D volume continuously for 
1 h. In the shot-noise-limited raw data, noise was dominant, and 
only a few intense events were seen (Fig. 5a). To suppress the shot 
noise and visualize as many release events as possible, we trained 
a denoising model with our method and enhanced the original 
low-SNR data. Denoised data had very high SNR, and those release 
events concealed by noise turned out to be discernable (Fig. 5a and 
Supplementary Video 10). For better comparison, we present several 
snapshots of a single plane at different moments (Fig. 5b,c), which 
indicates the superior denoising performance of our method. We 
manually annotated the position and time of all ATP release events 
throughout the entire session (Fig. 5d) and found that the release fre-
quency is approximately random during the 1-h imaging (Fig. 5e).  
Owing to the noise removal capability, the spatial profile of ATP 
release was clarified, and performing statistics on their geometric 
features (diameter and ellipticity) became feasible (Fig. 5f,g). The 
successful extension of DeepCAD-RT to the imaging of ATP release 
indicates its good potential on other neurotransmitter sensors.

Discussion
Noise is an ineluctable obstacle in scientific observation. For fluo-
rescence microscopy, the inherent shot-noise limit determines the 
upper bound of imaging SNR and restricts imaging resolution, 
speed and sensitivity. In this work, we present a versatile method to 
denoise fluorescence images with rapid processing speed that can 
be incorporated with a microscope acquisition system to achieve 
real-time denoising. Our method is based on deep self-supervised 
learning, and the original low-SNR data can be directly used for 
training convolutional networks, making it particularly advanta-
geous in functional imaging where the sample is undergoing fast 
dynamics, and capturing ground-truth data is hard or impossible. 
We have demonstrated extensive experiments, including calcium 
imaging in mice, zebrafish and flies, cell migration observations 
and the imaging of a new genetically encoded ATP sensor, cover-
ing both 2D single-plane imaging and 3D volumetric imaging. 
Qualitative and quantitative evaluations show that our method can 
substantially enhance fluorescence time-lapse imaging data and 
permit high-sensitivity imaging of biological dynamics beyond the 
shot-noise limit.

Removing shot noise from fluorescence images promises to cata-
lyze advancements in several imaging technologies. For example, 
in two-photon microscopy, multiplexed excitation by multiple 
laser foci can increase imaging speed, but the imaging SNR will 
decrease quadratically because of dispersed excitation power57–59. 
Our denoising method provides a potential solution to compensate 
for the SNR loss. Three-photon microscopy can effectively sup-
press background fluorescence and improve imaging depth through 
three-order non-linear excitation and longer wavelength60,61, but 
its practical use in deep tissue is still limited by low imaging SNR. 
Combining our method with three-photon microscopy could 
expedite its application in the deep mammalian brain. Light-field 
microscopy is an emerging technique for fast volumetric imaging of 
biological dynamics, but it relies on computational reconstruction 

Fig. 5 | DeepCAD-RT reveals the spatiotemporal patterns of extracellular ATP in vivo after laser-induced brain injury. a, Three-dimensional visualization 
of ATP release events in a 350 × 350 × 60 μm3 volume (30 planes, 1-Hz volume rate) after laser-induced brain injury. Left, low-SNR raw volume without 
denoising. Right, the same volume enhanced with DeepCAD-RT. A representative moment is demonstrated here, and similar performance was achieved 
throughout the whole imaging session (1 h, 3,600 volumes). Four ATP release events are indicated with arrowheads of different colors. The laser-ablated 
point (red dashed circle) was located at the center of the volume; scale bar, 50 μm. b, Example raw frames of a single plane at four different time points. 
c, DeepCAD-RT enhanced frames corresponding to those in b. Magnified views of yellow boxed regions are shown under each image; scale bars, 100 μm 
for the whole FOV and 20 μm for magnified views. d, The spatiotemporal distribution of ATP release during the 1-h-long recording. The release time is 
color coded, and the diameter of each release event scales to the size of each circle. The intersections of red dashed lines indicate the 3D location of the 
laser-induced injury. e, Counting ATP release events along the time axis. The binning width is 2 min. f, Box plots showing diameters of all release events 
(N = 196) in three orthogonal dimensions; x, 13.131 ± 0.3090; y, 12.125 ± 0.2911; z, 11.907 ± 0.3287 (mean ± s.e.m.). g, Statistics on the ellipticity of all 
release events (N = 196) in three orthogonal coordinate planes; x-y, 0.182 ± 0.0109; y-z, 0.213 ± 0.0114; x-z, 0.205 ± 0.0109 (mean ± s.e.m.).
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that is sensitive to noise62–64. Disentangling underlying signals from 
noisy images before light-field reconstruction could eliminate arti-
facts and ensure high-fidelity results. Moreover, a recently published 
work reported that standard Richardson–Lucy deconvolution can 
recover high-frequency information beyond the spatial frequency 
limit of the microscope if there is no noise contamination65, which 
inspires us that our method would be helpful for deconvolution 
algorithms by denoising input images in advance. Single-molecule 
localization microscopy is also susceptible to noise because the 
localization precision is fundamentally limited by SNR3,66. The 
noise-sensitive nature holds for other super-resolution microscopy 
techniques, such as stimulated emission depletion microscopy and 
structured illumination microscopy67,68. We reasonably envisage 
that our method and its future variants would benefit the develop-
ment of super-resolution microscopy.

As the backbone of our method lies in deep learning, its 
content-dependent trait requires users to train a specialized model 
for each task or each type of sample to ensure optimal results. 
Developing pretrained models on large-scale datasets and transfer-
ring them to new tasks by fine-tuning could be an optional solution 
to this problem. Another limitation is that adjacent frames used for 
training should have approximately identical underlying signals, 
which is the basic assumption of our self-supervised training strat-
egy. Thus, the imaging system should have adequate temporal reso-
lution relative to the biological dynamics to be imaged. Finally, the 
denoising performance of our method improves as the SNR of the 
input data increases. Comprehensive noise suppression by collabo-
rating physics-based approaches20,29 and computational denoising 
could be a way to achieve higher imaging sensitivity beyond the 
shot-noise limit.
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Methods
Imaging system. The optical setup integrated two two-photon microscopes for 
different purposes. One was a standard two-photon microscope with multicolor 
detection capabilities for multilabeling imaging and cross-system validation. The 
other was a custom-designed two-photon microscope to capture synchronized 
low-SNR and high-SNR (tenfold fluorescence photons) images for result 
validation (Extended Data Fig. 4). The two systems shared a titanium-sapphire 
femtosecond laser source with tunable wavelength (Mai Tai HP, Spectra-Physics). 
The excitation laser for all experiments was a linearly polarized Gaussian beam 
with a 920-nm central wavelength and an 80-MHz repetition rate. Before being 
projected into both systems, the laser beam was first adjusted in polarization by 
a half-wave plate (AQWP10M-980, Thorlabs) and modulated in intensity by an 
electro-optic modulator (350-80LA-02, Conoptics). A 1:1 4f system composed of 
two achromatic convex lenses (AC508-100-B, Thorlabs) was then configured to 
collimate the laser beam. Another 1:4 4f system (AC508-100-B and AC508-400-B, 
Thorlabs) was followed to expand the diameter of the beam. A mirror mounted  
on a two-position, motorized flip mount (MFF101, Thorlabs) was used to alternate 
between the two systems (OFF for the multicolor module and ON for the  
custom module).

The two systems used the same optical configuration for two-photon 
excitation. Specifically, the collimated, scaled laser beam was successively guided 
onto the fast axis (the resonant mirror) and the slow axis (the galvanometric 
mirror) of the galvo-resonant scanner (8315K/CRS8K, Cambridge Technology). 
The scanner provided fast 2D raster scanning under the control of two voltage 
signals. The orientation of the incident beam should be fine-adjusted to ensure 
the horizontality of the outgoing beam. Then, the output beam was recollimated, 
rescaled and corrected by a scan lens (SL50-2P2, Thorlabs) and a tube lens 
(TTL200MP, Thorlabs) to fit the back pupil of the objective and produce a flat 
image plane. We used a high numerical aperture (NA) water-immersion objective 
(×25/1.05-NA, XLPLN25XWMP2, Olympus) to expand the detection angle and 
increase the number of photons that can be detected. Approximately, the effective 
excitation NA was 0.7 in our experiments. To perform 3D volumetric imaging, 
we mounted the objective on a piezoelectric actuator (P-725, Physik Instrumente) 
to achieve high-precision axial scanning. For the detection path of the standard 
multicolor system, fluorescence photons emitted from the sample were captured 
by the objective and separated from the excitation light by a long-pass dichroic 
mirror (DMLP650L, Thorlabs). Another short-pass dichroic mirror (DMSP550, 
Thorlabs) was mounted in the detection path to separate green fluorescence 
and red fluorescence. The green fluorescence was purified by a pair of emission 
filters (MF525-39, Thorlabs; ET510/80M, Chroma) and detected by a GaAsP 
photomultiplier tube (PMT; H10770PA-40, Hamamatsu). The red fluorescence 
was filtered by an emission filter (ET585/65M, Chroma) and detected by the same 
type of PMT. For the detection path of the customized system for simultaneous 
low-SNR and high-SNR imaging, the previously mentioned short-pass dichroic 
mirror was replaced with a 1:9 (reflectance:transmission) non-polarizing plate 
beam splitter (BSN10, Thorlabs). Low-SNR images were formed by the ~10% 
reflected photons, and high-SNR images were formed by the ~90% transmitted 
photons. In this system, only green fluorescence was detected, and the same 
filters and PMT were used for both the low-SNR and high-SNR detection paths. 
The sensor plane of each PMT was conjugated to the back pupil plane of the 
objective using a 4:1 4f system (TTL200-A and AC254-050-A, Thorlabs) to 
maximize the detection efficiency. In general, the maximum FOV of the two 
two-photon microscopes was about 720 μm. The typical frame rate was 30 Hz for 
512 × 512 pixels, and the volume rate decreased linearly with the number of  
planes to be scanned.

System calibration. We imaged green-fluorescent beads to calibrate our imaging 
systems. For sample preparation, the original bead suspension was first diluted 
and embedded in 1.0% agarose and mounted on microscope slides to form a single 
bead layer composed of sparsely distributed beads. We calibrated both systems 
using 0.2-μm fluorescent beads (G200, Thermo Fisher) to obtain the lateral and 
axial resolution. Because the two systems had identical excitation optics, they had 
the same optical resolution. The lateral full width at half maximum (FWHM) is 
~0.6 μm, and the axial FWHM is ~3.5 μm (Supplementary Fig. 7). To calibrate the 
intensity ratio between the high-SNR detection path and the low-SNR detection 
path, we imaged 1-μm fluorescent beads (G0100, Thermo Fisher) and found 
that the intensity ratio is about 1:10 (Extended Data Fig. 5a–d), which indicated 
that the number of fluorescence photons of the high-SNR detection path was 
about ten times higher than that of the low-SNR detection path. High-SNR data 
synchronized with low-SNR data could serve as a reference to unveil underlying 
signals. We also imaged insect slices for validation, and the results confirmed our 
calibration (Extended Data Fig. 5e–h).

Model simplification. Theoretically, large models with more trainable parameters 
can implement extremely intricate functions on the input data. However, the 
very big model (16,315,585 (abbreviated 16.3 million) parameters in total) we 
previously used caused a series of problems, such as long training and inference 
time, large memory consumption and serious overfitting. We sought to solve these 
problems by simplifying the network architecture. Because network depth is of 

crucial importance for the performance69, instead of changing the depth of the 
network, we turned to reduce the number of feature maps in each convolutional 
layer. By continuously halving network parameters, we constructed seven models 
with exponentially decreased trainable parameters (16.3 million, 9.2 million, 
4.1 million, 2.3 million, 1.0 million, 0.57 million and 0.26 million, respectively). 
To evaluate these models, we used synthetic calcium imaging data of −2.5 dB 
SNR and trained them with the same amount of data (6,000 frames). The best 
training epoch of each model was determined by monitoring its performance on a 
validation set. Although the number of trainable parameters was reduced by ~94%, 
the denoising performance did not degrade because overfitting was suppressed 
effectively. The over-simplified network will also lead to reduced performance 
because of insufficient network capacity (Supplementary Fig. 2). Thus, using the 
architecture of 1.0 million trainable parameters is the best choice for practical use. 
A more comprehensive assessment, including training and inference time, memory 
consumption and output SNR, is shown in Supplementary Table 1. The lightweight 
model with ~1.0 million parameters was chosen as the final architecture.

Data augmentation. The strategy to eliminate overfitting by drastically reducing 
trainable parameters only works when there is enough training data. If only a 
small dataset is available, overfitting still occurs even with very small models70. 
To alleviate the data dependency of our method and further eliminate overfitting, 
we designed 12-fold data augmentation to generate enough training pairs from a 
small amount of data (Extended Data Fig. 2). Given a low-SNR time-lapse image 
stack, thousands of 3D training pairs with overlaps will be extracted from the 
input stack. A training pair includes an input patch and a corresponding target 
patch. The proportion of temporal overlapping was automatically calculated 
according to the number of training pairs to be extracted. For each training pair, 
we first swapped the input and target randomly with a probability of 0.5. Then, we 
performed six geometric transformations randomly for the training pair, including 
horizontal flip, vertical flip, left 90° rotation, 180° rotation, right 90° rotation and 
no transformation. Overall, there were 12 possible forms for each training pair, 
and they all have the same probability of occurrence, which inflated the training 
dataset by 12-fold. We investigated the benefit of our data augmentation strategy 
using synthetic calcium imaging data and found that the data dependency of our 
method was reduced effectively (Supplementary Fig. 3). A 1,000-frame calcium 
imaging stack (490 × 490 pixels) is enough to train a model with satisfactory 
performance. This feature is helpful to alleviate the problem of insufficient training 
data in fluorescence microscopy. To evaluate the effect of data augmentation on 
overfitting, we trained one model with data augmentation and another model 
without data augmentation with the same amount of data for a long training period 
(35 epochs) and monitored performance after each epoch. The results showed that 
training with data augmentation could keep the performance stable compared to 
the rapidly degrading performance without augmentation (Extended Data Fig. 3).  
The optimal performance was also improved because of augmented training 
data. Although the combination of model simplification and data augmentation 
eliminates overfitting, preparing more training data is still the most effective way to 
improve the denoising performance and avoid overfitting.

Network architecture, training and inference. The network architecture in this 
research reserves the topology of 3D U-Net71 that uses the encoder–decoder 
architecture in an end-to-end manner. To fully exploit spatiotemporal correlations 
in fluorescence imaging data, all operations inside the network were implemented 
in 3D, including convolution, max pooling and interpolation (Extended Data Fig. 8).  
Compared to our previous architecture33, the number of feature maps in each 
convolutional layer was reduced by fourfold, and the total number of trainable 
parameters was reduced by 16-fold (1,020,337 compared to 16,315,585), which 
massively improved the training and inference speed and reduced the memory 
consumption. For preprocessing, each input stack was subtracted by the average 
of the whole stack to handle the intensity variation across different samples and 
imaging platforms. These stacks were partitioned into a specified number of 3D 
(x-y-t) training pairs. The data augmentation strategy mentioned above would be 
applied to each training pair. Training was performed using the arithmetic average 
of an L1-norm loss term and an L2-norm loss term as the loss function. After the 
input stack flowed through the network, the subtracted average value would be 
added back after processing. Because the combination of model simplification 
and data augmentation eliminated overfitting, the model of the last training epoch 
could be directly selected as the final solution. For denoising of 3D volumetric 
imaging, the time-lapse stack of each imaging plane was saved as a separate TIFF 
file. All stacks were used for the training of the network.

The batch size for all experiments was set to the number of GPUs being used. 
The patch size was set to 150 × 150 × 150 pixels by default. All models were trained 
using the Adam optimizer72 with a learning rate of 5 × 10−5, and the exponential 
decay rates for the first-moment and second-moment estimates were 0.5 and 0.9, 
respectively. Using our Python code, training with 3,000 pairs of 3D patches for 20 
epochs took just 6.2 h on a single GPU (GeForce RTX 3090, Nvidia). The inference 
process for an image stack composed of 490 × 490 × 300 pixels (partitioned into 75 
3D patches) took as few as 8 s. Multi-GPU acceleration has been supported by our 
Python code. The time consumption of training and inference decreases linearly as 
the number of GPUs increases.
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Real-time implementation of DeepCAD-RT. To achieve real-time processing 
during imaging acquisition, we made a program interface to incorporate 
DeepCAD-RT into our image acquisition software (Scanimage 5.7 (ref. 73), Vidrio 
Technologies). For further acceleration and memory conservation, the inference 
of DeepCAD-RT was optimally deployed on GPU with TensorRT (Nvidia), a 
software development kit providing low-latency and high-throughput processing 
for deep learning applications by executing customized operation automatically for 
specific GPU and network architecture. Three parallel threads were designed for 
imaging, data processing and display. The schedule for multithread programming 
is depicted in Fig. 1c. Specifically, the first thread was used for image acquisition, 
which waited for a certain number of frames and packaged them into 3D (x-y-t) 
batches. Adjacent batches had overlapping frames, and half of the overlap would 
be discarded to avoid artifacts. Then, the second thread got low-SNR images 
passed by the first thread, processed them and produced denoised frames. Finally, 
these denoised frames were transferred to the third thread for display. When 
the imaging process stopped, denoised images would be automatically saved 
in a user-defined directory. The real-time implementation was programmed 
in C++ for best hardware interaction and compiled in Matlab (MathWorks), 
which could be called by any Matlab-based software or script. On a single GPU 
(GeForce RTX 3090, Nvidia), the real-time implementation achieved more than 
a 20-fold speed up compared to the original DeepCAD33 and had an extremely 
low memory consumption, as few as 701 MB with float16 precision. The real-time 
implementation of DeepCAD-RT has been packaged as a free plugin with a 
user-friendly interface (Extended Data Fig. 1). To transfer pretrained models, 
scripts were developed to convert PyTorch models to open neural network 
exchange (ONNX) models and call TensorRT builder to optimize ONNX models 
for a target GPU, which produced engine files that can be used by TensorRT. The 
construction of the engine file would eliminate dead computations, fold constants 
and combine operations to find an optimal schedule for model execution.

Animal preparation and fluorescence imaging. Multiple animal models (mice, 
zebrafish and flies) and fluorescence labeling methods (calcium, neutrophils and 
ATP release) were associated in this research. All experiments involving animals 
were performed in accordance with the institutional guidelines for animal welfare 
and have been approved by the Animal Care and Use Committee of Tsinghua 
University.

Mouse preparation and imaging. Adult mice (male or female without 
randomization or blinding) at 8–16 postnatal weeks were housed in an animal 
facility (24 °C and 50% humidity) under a reverse light cycle in groups of one to 
five. All imaging experiments were performed with our two-photon microscopes 
on head-fixed, awake mice.

For functional imaging of neural activity, we used transgenic mice hybridized 
between Rasgrf2-2A-dCre mice and Ai148 (TIT2L-GC6f-ICL-tTA2)-D mice 
expressing Cre-dependent GCaMP6f genetically encoded calcium indicator. 
Craniotomy surgeries were conducted for chronic two-photon imaging as 
previously described33. Briefly, mice were first anesthetized with 1.5% (by volume 
in oxygen) isoflurane, and a 6.0-mm-diameter craniotomy was made with a 
skull drill. After removing the skull piece, a coverslip was implanted on the 
craniotomy region, and a titanium headpost was then cemented to the skull for 
head fixation. After the surgery, 0.25 mg per gram (body weight) trimethoprim 
was injected intraperitoneally to induce the expression of GCaMP6f in layer 2/
layer 3 cortical neurons across the whole brain. After inflammation was gone and 
the cranial window became clear (~2 weeks after surgery), mice were head-fixed 
on a customized holder with a 3D-printed plastic tube to restrict the mouse body. 
The holder was mounted on a high-precision, three-axis motorized stage (M-VP-
25XA-XYZL, Newport) for sample translation. In vivo calcium imaging (30-Hz 
single-plane imaging) was performed on awake mice without anesthesia. The 
imaging of dendritic spines in L1 (20–60 μm below the brain surface) required 
adequate spatial sampling rate that was achieved by using large zoom factors.

For time-lapse imaging of neutrophil migration, we first performed 
craniotomies on wild-type mice (C57BL/6J) following the procedures described 
above. Acute brain injury caused by craniotomy induce immune responses in the 
brain. After surgery, neutrophils and blood vessels were simultaneously labeled by 
injecting 10 μg of red (Alexa Fluor 555 conjugate) wheat germ agglutinin (WGA) 
dye (W32464, Thermo Fisher Scientific) and 2 μg of green-fluorescence-conjugated 
Ly-6G/Ly-6C antibody (53-5931-82, eBioscience) intravenously. The two dyes 
were dissolved and diluted in 200 μl of 1× PBS. To avoid the potential influence 
of anesthesia on immune responses, in vivo two-photon imaging was performed 
in the mouse brain after the mouse was fully awake (~20 min after injection). 
Imaging experiments should be finished as soon as possible because these dyes are 
degradable in the mouse body. Empirically, the whole imaging session should take 
no longer than 5 h. Volumetric imaging was implemented by scanning the objective 
axially with the piezoelectric actuator. The frame rate of single-plane imaging 
was 30 Hz, and the volume rate of 3D imaging was 2 Hz (15 imaging planes). The 
whole 3D imaging session lasted ~20 min. For each 3D volume, the flyback frame 
acquired while the piezoelectric actuator was quickly returning from the bottom 
plane to the top plane should be discarded. Images of the green channel and the red 
channel were captured simultaneously and were separated by postprocessing.

For functional imaging of ATP dynamics, wild-type mice (C57BL/6J) were 
anesthetized with intraperitoneally injected Avertin (500 mg per kilogram (body 
weight), Sigma-Aldrich). A cranial window was opened on the visual cortex, and 
400–500 nl of adeno-associated virus (AAV2/9-GfaABC1D-ATP1.0, packaged at 
Vigene Biosciences) was injected (anterior–posterior: −2.2 mm relative to bregma, 
medial–lateral: 2.0 mm relative to bregma and dorsal–ventral: 0.5 mm below the 
dura, at an angle of 30°) using a microsyringe pump (Nanoliter 2000 injector, 
World Precision Instruments) to express GRABATP1.0 (ref. 34) in cortical astrocytes. 
A 4 mm × 4 mm square coverslip was implanted to replace the skull. After ~3 weeks 
of recovery and virus expression, two-photon imaging was performed to record 
ATP release events in the mouse cortex. Before imaging, brain injury was induced 
by ablating the tissue with a stationary laser focus (200 mW) for 5 s. The injury 
site was located at the center of the 3D imaging volume. Single-plane images were 
recorded at the plane 20 μm above the injury site. The frame rate of single-plane 
imaging was 30 Hz, and the volume rate of 3D imaging was 1 Hz (30 imaging 
planes). The flyback frame of each volume should be discarded. Only signals from 
the green channel were recorded, and the whole 3D imaging session lasted 60 min.

Zebrafish preparation and imaging. Transgenic zebrafish (Danio rerio) larvae 
expressing pan-neuronal GCaMP6s calcium indicator (Tg(HuC:GCaMP6s)) were 
housed in culture dishes at 28.5 °C in Holtfreter’s solution (59 mM NaCl, 0.67 mM 
KCl, 0.76 mM CaCl2 and 2.4 mM NaHCO3). At 4–6 d after fertilization, zebrafish 
larvae were separated and restricted in a small drop of 1.0% low-melting-point 
agarose (Sigma-Aldrich) and mounted on a microscope slide for imaging. A 
fine-bristle brush was used to adjust the posture of the larvae to keep the dorsal 
side up before the agarose solidified. After fixation, the larvae were placed under 
the objective, and Holtfreter’s solution was used as the immersion medium of the 
objective. Before image acquisition started, we previewed the image and rotated 
the microscope slide manually to keep the larva horizontal or vertical in the FOV. 
Two-photon calcium imaging of spontaneous neural activity was performed on the 
larvae at 26–27 °C without anesthesia or motion paralysis. All experiments were 
single-plane imaging, and the frame rate was 30 Hz for 512 × 512 pixels. Both large 
neuronal populations across multiple brain regions and small neuronal subsets 
localized in the optic tectum were imaged using different zoom factors.

Drosophila preparation and imaging. Flies were raised on standard cornmeal 
medium with a 12-h light/12-h dark cycle at 25 °C. Transgenic flies UAS-GCaMP7f 
were crossed with OK107-Gal4 to drive the expression of the GCaMP7f25 calcium 
indicator in essentially all Kenyon cells. All experiments were conducted on female 
F1 heterozygotes from this cross. Flies at 5 d after eclosion were anesthetized on 
ice and mounted in a 3D-printed plastic disk that allowed free movement of the 
legs, as previously reported74. The posterior head capsule was opened using sharp 
forceps (5SF, Dumont) at room temperature in carbonated (95% O2, 5% CO2) 
buffer solution (103 mM NaCl, 3 mM KCl, 5mM N-Tris, 10 mM trehalose, 10 mM 
glucose, 7 mM sucrose, 26 mM NaHCO3, 1 mM NaH2PO4, 1.5 mM CaCl2 and 4 mM 
MgCl2) with a pH of 7.3 and an osmolarity of 275 mosM. After that, the air sacks 
and tracheas were also removed. Brain movement was minimized by adding UV 
glue around the proboscis and removing the M16 muscle40,75. After preparation, 
flies were placed under the objective for two-photon imaging of calcium transients 
in the mushroom body. To enhance neural activity, 4-methylcyclohexanol and 
3-octanol diluted 1:1,000 in mineral oil were used as odors. Flies were randomly 
given the two odors for 5 s every 10 s using a custom-made air pump. All 
experiments were single-plane imaging experiments at 30 Hz with 512 × 512 pixels.

Generation of synthetic calcium imaging data. We used synthetic calcium 
imaging data (simulated time-lapse image sequences) for quantitative evaluations 
of our method and for comparisons with DeepInterpolation32. Our simulation 
pipeline consisted of synthesizing noise-free calcium imaging videos (ground 
truth) and adding different levels of mixed Poisson–Gaussian noise22,33. To 
generate noise-free calcium imaging data, we adopted in silico NAOMi, a 
simulation method to create realistic calcium imaging datasets for assessing 
two-photon microscopy methods36. The parameters of our simulation are listed in 
Supplementary Table 2. Those not mentioned all used default values. Simulated 
data had very similar spatiotemporal features to experimentally obtained data, 
including neuronal anatomy (cell bodies, neuropils, dendrites and so on), neural 
activity and blood vessels. For noise simulation, we first performed Poisson 
sampling on noise-free images to simulate the content-dependent Poisson noise. 
We then added content-independent Gaussian noise to these data. Poisson noise 
was set as the dominant noise source. Different imaging SNRs were simulated by 
different relative photon numbers that changed the intensity of input noise-free 
images (Supplementary Fig. 1).

Neutrophil segmentation. Four types of data were involved in this experiment, 
that is, raw data (low-SNR), high-SNR (tenfold fluorescence photons) data, 
denoised raw data and denoised high-SNR data. Ten representative images with 
relatively sparse cells were selected from the dataset of single-plane neutrophil 
imaging for semantic segmentation. To obtain ground-truth segmentation masks, 
five human experts were recruited to annotate all neutrophils in each denoised 
high-SNR image using the ROI Manager toolbox of Fiji. The final ground-truth 
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masks were determined by majority voting. Neutrophil segmentation was 
conducted using Cellpose46 and Stardist47, two CNN-based generalist algorithms 
for cellular segmentation. For both methods, default parameters and pretrained 
models were used without additional training. Segmentation performance was 
quantitatively evaluated with the IoU score76 defined as

IoU =

A ∩ B
A ∪ B

,

where A is the mask segmented by algorithms and B is the ground truth. Statistical 
analysis and representative results are summarized in Extended Data Fig. 7.

Three-dimensional visualization. For volumetric imaging of neutrophil migration 
and ATP release, we performed 3D visualization to reveal the spatiotemporal 
patterns of biological dynamics. Imaris 9.0 (Oxford Instruments) was used for 
the visualization of all volumetric imaging data. Both the original low-SNR data 
and denoised data were imported into Imaris, rendered with pseudocolor and 3D 
reconstructed using the maximum intensity projection mode. The brightness of 
data before and after denoising was adjusted to make them have a similar visual 
effect. The contrast of low-SNR data was fine-tuned to show underlying signals 
as clearly as possible. All values for gamma correction were set to one. The red 
channel (blood vessels) of neutrophil migration was averaged by multiple frames 
to improve its SNR and merged with the green channel. Cross-talk signals out of 
the blood vessel were manually suppressed with Fiji. Animations were generated by 
automatically interpolating intermediate frames between selected keyframes.

Annotation of ATP release events. The whole annotation pipeline was 
implemented on the denoised data (Supplementary Fig. 8). The spatial shape of 
each ATP release event could be modeled as an ellipsoid. To obtain the center 
position and peak time of each event throughout the whole imaging session, we 
manually annotated them by adding measurement points in Imaris. All spatial and 
temporal coordinates were exported from the software after annotation. Events 
at the edge of the volume were excluded because only a part of them appeared in 
the FOV. Based on these annotated coordinates, intensity profiles along all three 
dimensions of each event were extracted from denoised stacks with a custom 
Matlab (MathWorks) script. Gaussian fitting was performed for all intensity 
profiles to reduce the influence of background fluctuations. All fitted Gaussian 
curves were then deconvolved with the system point spread function using a 
standard Richardson–Lucy algorithm77,78. This step eliminated the influence of 
limited and anisotropic spatial resolution. The diameter of these ATP release 
events could be extracted in each dimension, which was defined as the FWHM of 
deconvolved Gaussian curves. The ellipticity of release events was defined as

ellipticity =

a − b
a

,

where a is the major axis of the ellipse, and b is the minor axis of the ellipse. 
Ellipticity was calculated for each 3D release event in all three orthogonal 
coordinate planes (x-y, y-z and x-z).

Method comparison. Four baseline methods are included in the comparison. 
Synthetic calcium imaging images (6,000 frames, 30 Hz frame rate) were used for 
the training and testing of all methods. For each method, a specified model was 
trained for each SNR level. The supervised baseline was obtained with a larger 
3D U-Net (4.1 million trainable parameters) trained in a supervised manner. 
All hyperparameters were kept the same with DeepCAD-RT. DeepInterpolation 
was implemented with the companion code of relevant papers32, and two kinds 
of DeepInterpolation models were trained using default hyperparameters. The 
first model was trained from scratch. The other model was fine-tuned based on a 
pretrained model (pretrained with 225,000 two-photon images of the Ai93 reporter 
line) by presenting the training data only once according to the DeepInterpolation 
paper. Noise2Void37 models were trained for 50 epochs with 64 × 64 patch size and 
128 batch size. HDN is the upgraded version of DivNoising79 with state-of-the-art 
performance. Because no calibration data are available, the noise models of HDN 
were bootstrapped from the noisy data, and the conditional distributions were 
estimated from paired noisy images and pseudo-ground truth (obtained from 
Noise2Void). The noise models were trained for 10,000 epochs with a batch size of 
250,000 and 0.01 learning rate. The final HDN model of each SNR was trained for 
150 epochs, and the best training epoch was selected by evaluating the output SNR 
of the first 10 frames. The minimum mean square error estimate of each frame was 
obtained by averaging 100 denoised samples. All hyperparameters not mentioned 
here were set as default values.

Performance metrics. To quantitatively evaluate the performance of our method, 
both synthetic data and experimentally obtained data were used. For synthetic 
calcium imaging data, ground-truth images were available, and SNR was calculated 
to quantify the denoising performance. SNR was defined as the logarithmic form

SNR = 10 · log10
∥y∥22

∥x − y∥22
,

where x is the denoised data, and y is the ground truth. For experimentally 
obtained data, synchronized high-SNR data with tenfold photons acquired with 
our system were used as the reference of underlying signals. Pearson correlation 
coefficient (R) was used as the performance metric, which is formulated as

R =

E
[

(x − μx)(y − μy)
]

σxσy
,

where x and y are the denoised data and corresponding high-SNR data, 
respectively; μx and μy are the mean values of x and y; and σx and σy are the standard 
deviations. The operator E represents arithmetically averaging. Pearson correlation 
was used for both images and fluorescence traces. All performance metrics were 
implemented with custom Matlab scripts and built-in functions.

Statistics and reproducibility. Sample sizes and statistics are reported in the figure 
legends and text for each experiment. All box plots were plotted in the format of 
standard Tukey box and whisker plots. The box indicates the lower and upper 
quartiles, while the line in the box shows the median. The lower whisker represents 
the first data point greater than the lower quartile minus 1.5× the interquartile 
range. Similarly, the upper whisker represents the last data point less than the 
upper quartile plus 1.5× the interquartile range. Outliers were plotted in small 
black dots. For the comparison of images and fluorescence traces before and after 
denoising, a one-sided paired t-test was performed, and P values are indicated 
with asterisks. Representative frames were demonstrated in the figures, and similar 
results were achieved on more than 1,500 frames for all experiments.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We have no restriction on data availability. All source data (~250 GB), including 
synthetic calcium imaging data, experimental recordings of calcium dynamics, 
neutrophil migration and cortical ATP release, have been archived and made 
publicly available at https://cabooster.github.io/DeepCAD-RT/Datasets/. Source 
data are provided with this paper.

Code availability
All relevant resources are readily accessible on our GitHub page at https://
cabooster.github.io/DeepCAD-RT/. The source PyTorch code, demo notebooks (in 
Jupyter Notebook and Google Colab) and the code for real-time implementation 
can be found at https://github.com/cabooster/DeepCAD-RT/. A detailed tutorial 
for all codes has been provided at https://cabooster.github.io/DeepCAD-RT/
Tutorial/.
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Extended Data Fig. 1 | Real-time implementation of DeepCAD-RT. Real-time denoising was implemented by incorporating DeepCAD-RT into the image 
acquisition software. Images captured by the microscope were seamlessly fed into DeepCAD-RT, which denoised the input low-SNR images using 
pre-trained models and displayed denoised images after real-time processing.
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Extended Data Fig. 2 | Data augmentation strategy. Adjacent frames in the original low-SNR stack (xy-t) were divided into two sub-stacks. One as the 
input volume and the other one as the target volume. Before being fed into the network for training, each training pair was augmented 12-fold through a 
random swap and six random geometric transformations.
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Extended Data Fig. 3 | Training stability with and without data augmentation method. Simulated data (1000 frames, 30 Hz frame rate, SNR = −2.51 dB) 
were used in this experiment for quantitative evaluation. The network architecture has been simplified (~1.0 million trainable parameters). a, Denoising 
performance (SNR) with the increase of training epoch. Lines represent mean values and error bars represent the minimum and maximum values.  
b, Example ground truth (GT) images, raw data before denoising, and denoising results with and without data augmentation. Scale bar, 20 μm.
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Extended Data Fig. 4 | Imaging system. Our imaging system was composed of a multi-color two-photon module (blue box) and a custom-designed 
two-photon module to capture synchronized low-SNR and high-SNR images (yellow box). Ti:sapp: titanium-sapphire laser with tunable wavelength; HWP: 
half-wave plate; EOM: electro-optic modulator; M1-M4: mirrors; L1-L16: lens; Scanner1, Scanner2: galvo-resonant scanners; DM1, DM2: long-pass dichroic 
mirrors to separate fluorescence signals (green path) from the excitation laser (red path); DM3: short-pass dichroic mirror to separate green fluorescence 
and red fluorescence. FM: flip mount to alternate between the two modules; F1-F4: emission filters; BS: 1:9 (reflectance: transmission) non-polarizing plate 
beam splitter; PMT1-PMT4: photomultiplier tubes.
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Extended Data Fig. 5 | System calibration. a, Example frames captured by the low-SNR detection path (left) and the high-SNR detection path (right).  
b, Average projection of 300 continuously acquired frames. Noise was largely suppressed and underlying fluorescence signals were revealed. c, Intensity 
profiles (normalized to the maximum of high-SNR recording) along the dashed lines in b. d, The intensity (photon) ratios (high-SNR relative to low-SNR) 
of all 11 fluorescent beads in the FOV. Each point represents one bead and the average intensity ratio is ~10.0 (blue dashed line). e, Example images of an 
insect slice captured by the low-SNR detection path (left) and the high-SNR detection path (right). f, Average projection of 1000 consecutive frames.  
g, h, Intensity profiles along the blue and green dashed lines in f.
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Extended Data Fig. 6 | Denoising calcium imaging across multiple brain regions in larval zebrafish. a, Original low-SNR recording. b, DeepCAD-RT 
enhanced data. c, Synchronous high-SNR recording with 10-fold fluorescence photons. Magnified views of the yellow boxed region showing calcium 
dynamics in a 2-second period. Arrowheads point to the same neuron. Scale bar, 50 μm for the large FOV and 10 μm for magnified views. d, y-t slices along 
the dashed line in c. Two calcium events are indicated with arrowheads of different colors. Scale bar, 50 μm. e, Pearson correlation of image slices along all 
three dimensions before and after denoising. x-y slice, N = 9000; y-t slice, N = 400, x-t slice, N = 485. P values were calculated by one-sided paired t-test. 
****P < 0.0001 for all comparisons.
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Extended Data Fig. 7 | The performance of neutrophil segmentation before and after denoising. a, Segmentation performance of Cellpose46 and 
Stardist47 on raw low-SNR data, synchronous high-SNR data (10-fold fluorescence photons), DeepCAD denoised raw data, and DeepCAD denoised 
high-SNR data (N = 10). The Intersection-over-Union (IoU) score was used to quantify the segmentation performance. Manually annotated masks were 
used as the ground truth. b, Representative input images and segmented masks. Correctly segmented regions (true positive) are colored green. Missing 
(false negative) and extra regions (false positive) are colored red and blue, respectively. Scale bar, 20 μm.
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Extended Data Fig. 8 | Network architecture. We used simplified 3D U-net71 as the network architecture, which is composed of a 3D encoder module, a 
3D decoder module, and skip connections from the encoder module to the decoder module. The network architecture was simplified by pruning features in 
all convolutional layers. The number of trainable parameters was reduced from ~16.3 million (16,315,585) to ~1.0 million (1,020,337) for higher processing 
speed and less memory consumption.
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