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Prominent involvement of acetylcholine
dynamics in stable olfactory representation
across the Drosophila brain

Jiaqi Fan 1,2,3,4,5,10, Yuling Wang1,3,4,10, Lingbo Li1,3,4,10, Jing He1,3,4,
Zhifeng Zhao1,3,4, Fei Deng 6,7, Guochuan Li6,7, Xinyang Li 8, Yiliang Zhou1,3,4,
Jiayin Zhao1,3,4, Ning Huang4,9, Yixin Hu1,3,4, Yulong Li 6,7, Jiamin Wu 1,3,4,8 ,
Lu Fang 2,3 & Qionghai Dai 1,3,4,8

Despite the vital role of neuromodulators and neurotransmitters in the neural
system, their spatiotemporal correlationwith neuronal activities acrossmultiple
brain regions remainunclear. Here,we employed two-photon synthetic aperture
microscopy (2pSAM) and neurochemical indicators to simultaneously record
calcium and acetylcholine (ACh)/5-HT dynamics across multiple regions of the
Drosophila brain over 2 h. Presenting 3 different odors acrossmultiple trials, our
analyses revealed signal-specific differences in responsiveness, functional con-
nectivity, and odor classification accuracy across the brain. We further con-
structed low-dimensional manifolds to characterize the global odor-related
dynamics. Incorporating both calcium and ACh signals enhanced odor classifi-
cation accuracy in the global low-dimensional manifold and in specific brain
regions where their functional connectivity network features exhibited com-
plementary patterns. Moreover, ACh dynamics demonstrated relatively stable
temporal characteristics compared to calcium and 5-HT. These results suggest
the potential contribution of ACh to consistent odor representations and illus-
trate the utility of multi-signal imaging in studying neural computation.

High-throughput neuronal recording techniques have significantly
advanced the understanding of spatiotemporal neuronal activities and
functions1–10. However, these advancements stand in contrast to the
gap in the accessibility of other crucial brain signals, such as neuro-
modulators and neurotransmitters, primarily due to existing technical
limitations11. This gap impedes our ability to comprehensively under-
stand the systemic functional roles of these neurochemicals12–14 and
the neural system. For instance, in sensory processing, while different
neurochemicals have distinct cellular effects, the purported functions
overlap substantially15,16. Thus the current hypotheses of the functions

and roles of particular neurochemicals may be limited12. Furthermore,
the quantitative relationship between neuronal activity and neuro-
chemical release in vivo is poorly characterized due to limited indi-
cators and imaging systems for simultaneous recording13,17–21.
Consequently, how these dynamics correlate, differ, and synergisti-
cally represent and process information remains largely unknown.
Previous research reported dissociable dopamine dynamics, indicat-
ingpossiblefiring-independentdopamine release and the insufficiency
of solely recording dopamine cells for understanding dopamine
signals20. Therefore, elucidating the spatiotemporal relationships and
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information representation of neuronal activities and neurochemical
dynamics in a systemic view is critical for advancing our understanding
of the neural system.

A typical example is the representation of sensory information,
specifically olfaction, which is considered a fundamental cognitive
function of the brain with significant involvement of neuromodulators
and neurotransmitters22–25. Despite the longstanding research interest
in olfactory processing, comprehension of olfactory representation in
terms of neuronal activity and neurochemical dynamics remains lar-
gely unexplored. The current understanding of olfactory processing is
biased towards early brain layers, leaving olfactory information
representation and arrangement in higher-order regions elusive26–32.
Moreover, there is evidence of representational drift in neuronal
activity related to olfaction and other sensory modalities occurring
over hours and days1,2, yet the extent of these changes requires further
characterization. Neurochemicals, such as acetylcholine (ACh)16,33–35

and serotonin (5-HT)12,15,23, play crucial roles in olfactory processing
and memory. Nonetheless, their spatiotemporal dynamics in relation
to olfactory stimuli across the brain over extended periods remain an
open question. Recent rapid advancements in fluorescent neuro-
chemical indicators and high-throughputmicroscopy techniques offer
the potential for large field-of-view (FOV) simultaneous recording of
neuronal activities and neurochemical dynamics, which can enlighten
us regarding these unresolved issues. A recent study utilizing these
techniques revealed spatiotemporal heterogeneous coordination of
cholinergic and neocortical activity across different waking states13.
However, there is still a gap in understanding information repre-
sentation by neuronal activities and neurochemical dynamics.

Here, we employed two-photon synthetic aperture microscopy
(2pSAM) for 2-h (2 h) high-speed volumetric imaging36 across multiple
regions of the Drosophila brain, which was pan-neuronally labeled by
the green-fluorescent calcium indicator jGCaMP7f (G7f)37 and a red-
fluorescent indicator (rGRAB_ACh-0.5 (rACh) for ACh, or
rGRAB_HTR2C-0.5 (r5-HT) for 5-HT)38,39, to elucidate the spatio-
temporal odor representation of neuronal activities and neurochem-
ical dynamics. Unsupervised deep-learning-based denoising
algorithms were applied to increase the signal-to-noise ratio40–42. Our
findings indicated diverse response properties, functional con-
nectivity, and odor representation across the brain and among these
dynamic signals. In accordance with the good performance of
multiple-brain-region odor identity representation, we identified odor-
specific representation ensembles in physical space. Furthermore,
integrating ACh dynamics improved the performance of odor identity
representation by calcium, suggesting thatAChdynamicsmayprovide
additional features beyond simple correlation with calcium signals.
Consistently, voxel-level functional connectivity networks of ACh in
specific brain regions43 also exhibited connectivity strength com-
plementation to the networks of calcium signals. Analyzing the low-
dimensional manifolds of olfactory responses, we further character-
ized odor-specific and neurochemical-specific representations and the
temporal changes. We found that ACh dynamics exhibited higher
temporal stability compared to calcium or 5-HT dynamics in the low-
dimensional manifolds and functional connectivity networks over 2 h.
These findings suggest a potential avenue for future studies on sys-
temic information representation and neural networks encompassing
both calcium and neurochemical dynamics, and indicate potential
contributions of neurochemicals in information representation.

Results
Multiple-brain-region recording of neuronal activities and
neurochemical dynamics
To simultaneously record neuronal activities and neurochemical
dynamics across the Drosophila brain, we employed a three-step
crossbreeding method to generate flies with pan-neuronal expression
of G7f together with either rACh or r5-HT. We surgically exposed the

whole central brain by gently opening the posterior head cuticle of the
fly and keeping the posterior brain surface flat. 2pSAM was used for
dual-color volumetric imaging of the Drosophila brain (Fig. 1a), with
the FOV measuring 458.7μm × 458.7μm × 100μm. This FOV covered
nearly entire lateral range and about half of the axial range of the fly
central brain (about 80 to 180μm under the surface), corresponding
to approximately 43 brain regions (Fig. 1b, c; Supplementary Table 1
and Supplementary Movie 1)3,44.

To study neuronal activities and neurochemical dynamics during
odor stimulation, we administered three different single compounds
as olfactory stimuli—3-octanol (OCT), 4-methylcyclohexanol (MCH),
and ethyl acetate (EA)—to the flies in a pseudo-random order (Fig. 1a
and Supplementary Movie 1) and recorded the olfactory responses
(Supplementary Fig. 1a–d). At the concentration adopted in this study,
OCT and MCH are two comparably representative aversive odors for
flies, whereas EA is relatively more attractive45–48, which enable the
investigation of odor identity as well as latent preference. Utilizing the
3-dimensional (3D) imaging ability and low phototoxicity of 2pSAM36,
we conducted volumetric recording of neuronal activities and neuro-
chemical dynamics at a sampling rate of 30Hz for approximately two
hours, with 180 trials (60 sessions) of odor stimulation in total, pre-
ceded by a 10-min resting-state period (Fig. 1a, d). This approach
facilitated the analysis of odor representation and temporal changes
across multiple brain regions. Throughout the imaging process, the
flies maintained a favorable condition and exhibited consistent odor
responses (Fig. 1d). We employed denoising algorithms40–42 to extract
the temporal traces with a high signal-to-noise ratio (SNR) for more
than 200,000 voxels across multiple brain regions per fly (Fig. 1c).
Heterogeneity and distinction of responses are observed for calcium,
ACh, and 5-HT (Fig. 1b–d; and Supplementary Movie 1), which will be
discussed in detail in the following section.

Diverse olfactory responses and functional connectivity across
the brain and among the dynamic signals
Calcium, ACh and 5-HT signals all response to odor stimuli (Fig. 1c, d).
We analyzed the distribution, intensity, and dynamic characteristics of
their responses and observed diverse response patterns across
the brain.

To examine the distribution of responses, we calculated the cor-
relation between odor stimuli and the dynamic signals as a measure-
ment of responsiveness (Fig. 2a and Supplementary Fig. 1e, f). We
found that three dynamics displayed distinction in responsiveness
distribution across the brain (two-way ANOVA for factors dynamics
and brain regions: P <0.0001 for both factors, F = 43.2392, degrees of
freedom = 2, and effect size (partial eta-squared) = 0.7004 for
dynamics. The non-parametric Scheirer–Ray-Hare test yielded similar
significance; see the Source data for details). For calcium, all olfactory
regions exhibit higher responsiveness than the average level of non-
olfactory regions (Supplementary Fig. 1f; see the Source data for
detailed statistical results). For ACh, among olfactory regions, the LH
andSLP show low responsiveness comparable to non-olfactory regions
(Fig. 2a, Supplementary Fig. 1f). This result differs from previous
findings that the lateral protocerebrum, encompassing these regions,
is a crucial higher-order olfactory center implicated in ACh-mediated
modulation29. In contrast, the responsiveness of ACh in the MB is
relatively high (Fig. 2a, Supplementary Fig. 1f), implying a potentially
critical roleof ACh in theMB49,50. Regarding 5-HT, it exhibits lowoverall
responsiveness across all regions (Supplementary Fig. 1f), relevant to
its fast decrease in response in initial trials (Fig. 1d). Among olfactory
regions, the LH exhibits even lower responsiveness for 5-HT (Fig. 2a,
Supplementary Fig. 1f).

Response intensity was quantified using the standard deviation
and the area under the curve (AUC) of ΔF/F during odor stimulation
(Fig. 2a and Supplementary Fig. 2, “Methods”). It exhibits large het-
erogeneity across the brain, with only a small subset of voxels

Article https://doi.org/10.1038/s41467-025-63823-2

Nature Communications |         (2025) 16:8638 2

www.nature.com/naturecommunications


demonstrating high values (Fig. 2a and Supplementary Fig. 2, “Meth-
ods”). Consequently, when assessing the average intensity of every
brain region, many olfactory brain regions do not show evident higher
values compared to other regions (Supplementary Figs. 1g, h and 2). At
the voxel level, there is variation in response intensity even within
single brain regions (Figs. 1c and 2b). Additionally, the response
intensity of calcium and ACh exhibits some degree of complementa-
tion, with specific voxels displaying low calcium intensity but high ACh
intensity (indicated by black arrows in Fig. 2b, c).

Additionally, we characterized odor response dynamics measur-
ing phase delays and pulse widths (Fig. 2d, “Methods”). We refined the
analyses by including only olfactory brain regions with high respon-
siveness (Supplementary Fig. 1e, f). For calcium signals, the MB,

especially the MBPED, exhibits faster response than other regions
(Fig. 2d; phase delay for the MBPED (mean ± s.e.m): 0.79 ±0.05 s, see
the Source data for detailed statistical results). For ACh, the SIP dis-
plays shorter pulsewidth than theMB andCRE (Fig. 2d; pulsewidth for
the SIP (mean ± s.e.m): 2.64 ±0.41 s, see the Source data for detailed
statistical results). As a reference, we measured the kinetics of rACh
and r5-HT onHEK293T cells (Supplementary Fig. 1k, l). The on-kinetics
of rACh and r5-HT are about 120ms and 80ms, and the off-kinetics are
about 1.82 s and 1.1 s, respectively.

To further characterize distinctions among calcium, ACh, and
5-HT dynamics at the systems level, we constructed functional con-
nectivity matrices and networks for each signal during odor stimula-
tion (Fig. 2e) and the resting state (Supplementary Fig. 3a). The
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networks exhibit distinct functional connectivity patterns across
dynamic signals and states (Fig. 2e, f; and Supplementary Fig. 3a).
During odor stimulation, two primary communities emerge within the
networks (“Methods”), with similar community divisions observed
across these dynamics. Whereas, the LH is separated from other
olfactory regions in the 5-HT communities (Fig. 2e). Calcium displays a

higher node degree compared to ACh and 5-HT in both states (Fig. 2g
and Supplementary Fig. 3b). Additionally, the connection strength
within the major olfactory-related community is higher for calcium
than for ACh and 5-HT during odor stimulation (Supplementary
Fig. 3c). Examining network changes betweenodor stimulation and the
resting state, all signals exhibit altered degree distributions across
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states (Fig. 2g), with average node degrees increasing for calcium and
5-HT dynamics while remaining stable for ACh (Supplementary
Fig. 3d). Additionally, the connection strength ratio of the major
olfactory-related community (community ratio) for calcium dynamics
remains consistent across states, indicating a stable olfactory-related
community significance under both conditions (Fig. 2e, h; and Sup-
plementary Fig. 3a). However, changes are observed in this ratio for
ACh and 5-HT, suggesting connectivity alterations in response to odor
stimulation (Fig. 2e, h; and Supplementary Fig. 3a).

Odor identity representation of calcium, ACh, and 5-HT
dynamics across multiple brain regions
We observed voxel-level response variations among different odors
(Fig. 2b). To further investigate odor representation, we conducted
odor identity classification based on calcium, ACh, and 5-HT
responses. Initially, we calculated classification accuracy within
blocks of 4 × 4 × 2 voxels and generated accuracymaps across the FOV
for each signal (Fig. 3a). These accuracy maps show different spatial
distributions of odor identity representation (Fig. 3a). The average
accuracy in most brain regions shows distinction among three signals
(Fig. 3b). Calcium displays widespread odor coding across multiple
brain regions, with high accuracy in the LH (Supplementary Fig. 1i, j).
All olfactory regions show higher accuracy than the average level of
non-olfactory regions for calcium (Supplementary Fig. 1i, j). However,
the SLP for ACh and the MBPED, LH, and SLP for 5-HT display low
decoding accuracy comparable to the average level of non-olfactory
regions (Supplementary Fig. 1i, j), aligning with their low responsive-
ness (Fig. 2a–c; Supplementary Fig. 1e, f). In contrast, ACh shows
high decoding accuracy predominantly in the MB, especially in the
MBML, consistent with its strong response (Fig. 2a–c; Supplementary
Fig. 1e, f), indicating the important role of ACh in the MB.

Given the observed heterogeneity in response properties within
individual brain regions (Fig. 2a, b), we further integrated signals in
specific brain regions for odor classification (“Methods”; and Supple-
mentary Fig. 4a, b). We then compared the classification accuracy
obtained from signal integration with the average accuracy of the
blocks within each region. As a result, signal integration led to an
increase in accuracy (Supplementary Fig. 5a–c), suggesting a coordi-
nated odor identity representation within individual brain regions.
Additionally, we compared the classification accuracy of two simulta-
neously recorded signals (calcium and ACh/5-HT) in these regions
(Supplementary Fig. 5d). The accuracy of 5-HT is either lower or
comparable to that of calcium, whereas ACh outperforms calcium in
specific brain regions, such as the MBML and EB (Supplemen-
tary Fig. 5d).

Furthermore, we integrated signals and employed dimensionality
reduction to investigate odor identity representation at the multiple-
brain-region level (Fig. 3c; “Methods”; and Supplementary Fig. 4c–f).
First, since functional connectivity networks displayed two primary
communities (Fig. 2e), we applied a brain-regionmask to select voxels

within the community containing the majority of olfactory brain
regions. Next, we performed block-wise principal component analysis
(PCA) to effectively reduce data dimensionality. We then consolidated
principal components (PCs) from all blocks and implemented PCA
again, followed by linear discriminant analysis (LDA), to map the high-
dimensional activity into a stimulus-related low-dimensional space.
LDA was performed on training sets, and the resultant transformation
was applied to testing sets without any overlap in trials to avoid data
leakage (Fig. 3d–f; Supplementary Movie 1). In the low-dimensional
space, individual trial traces formed manifolds, where distinct trajec-
tories separated trials associatedwith different odor stimuli, leading to
clear segregation (Fig. 3d–f, top). Trial traces colored by delivery
orders showed temporal properties of the manifolds. For example, in
the manifolds of calcium and 5-HT, latter trials exhibited shorter
extensions, indicating temporal changes in representation (Fig. 3d–f,
middle; discussed in detail below). When averaging trials of the same
odor identity, we observed that responses emerged from a random
state around the center point, extended during odor presentation, and
then gradually returned back (Fig. 3d–f, bottom). To further quantify
odor identity representation, we applied a support vector machine
(SVM) classifier in the LDA space. Instead of classifying trials solely
based on the responses at a specific time point24,51, we leveraged full
trial trajectories, incorporating richer temporal information. Classifi-
cation accuracy was evaluated using 5-fold cross-validation. Voxel-
level multiple-brain-region data yields higher accuracy than region-
level data (“Methods”; Supplementary Figs. 4g, h, and 5e–g) and single
brain regions (Supplementary Fig. 5h–j), indicating a coordinated odor
identity representation across the brain. The overall performances for
calcium and ACh are comparable (calcium (mean ± s.e.m): 92.14% ±
1.33%, ACh (mean± s.e.m): 94.83%± 1.88%; two-sidedMann–WhitneyU
test: U-value = 61, Effect size (rank-biserial correlation) = −0.39,
P =0.09; Fig. 3g), while the accuracy for 5-HT is lower (5-HT (mean ±
s.e.m): 63.11% ± 4.30%; two-sided Mann–Whitney U test: compared
with G7f: U-value = 197, Effect size (rank-biserial correlation) = 0.97,
P <0.0001; compared with ACh: U-value = 100, Effect size (rank-
biserial correlation) = 1, P =0.0003; Fig. 3g), as depicted in the mani-
folds (Fig. 3d–f).

Given that extensive neuronal activities correlate withmotion and
behavior3,52–54, it is important to assess whether movement-related
signals could confound our interpretation of odor identity repre-
sentation. To address this, we captured videos of fly abdomens and
extracted motions (Supplementary Fig. 6a). The correlation between
odor stimuli and motion energy varied a lot across individual flies,
showing weak, positive, or negative associations (Supplementary
Fig. 6b). To further investigate, we applied PCA to extract behavioral
features (Supplementary Fig. 6c). While these features could predict
stimulus periods and intervals, they were unable to classify odor
identities (Supplementary Fig. 6d).We further predicted calcium, ACh,
and 5-HT dynamics frombehavior, stimulus, and both (Supplementary
Fig. 6e, f). Both behavior and stimulus could explain partial variance of

Fig. 2 | Heterogeneous and distinct olfactory responses and functional con-
nectivity across the brain for G7f, rACh, and r5-HT. a Left: Maps of correlation
between three dynamics and odor stimuli averaged across flies. Right: Maps of the
average standard deviation of ΔF/F during odor stimulation. b Trial-averaged
responses of sample voxels. Dashed lines mark odor onset, and short lines above
mark stimulation periods. c ΔF/F traces. Black arrows indicate voxels with low
response intensity for G7f but high for rACh in (b, c).d Phase delay and pulse width
in olfactory brain regionswith high responsiveness. Box plots: center lines,median;
dashed lines, mean; box limits, upper and lower quartiles; whiskers, 1.5x inter-
quartile range. Only the significance related with the MBPED is shown in the phase
delay of G7f. In other panels, the absence of significance markers indicates no
significance. e Left: Clustered functional connectivity matrices during odor sti-
mulation averaged across flies. Color blocks mark olfactory (coral) and non-
olfactory (black) regions. Right: Functional connectivity networks. Edge colors and

widths reflect connection strength, and node colors indicate region classes. Dashed
boxes and circles sign the communities containing most olfactory regions.
f Functional connection patterns. g Degree distribution in functional connectivity
networks.hCommunity ratio,mean ± s.e.m. Each light-colored line represents a fly.
10 flies co-labeled by G7f and rACh and 10 co-labeled by G7f and r5-HT analyzed.
n = 20 for G7f,n = 10 for rACh,n = 10 for r5-HT in (a, left), and (d–h). Flies co-labeled
by G7f and rACh with high-intensity non-specific fluorescence are excluded in
(a, right; n = 15 for G7f, n = 5 for rACh, n = 10 for r5-HT) and specific regions in (d).
Stim: Odor stimulation. RS: The resting state. Two-sided Mann–Whitney U test in
(d); Scheirer–Ray–Hare test in (f); Two-sidedKolmogorov–Smirnov test in (g); Two-
sided Wilcoxon signed-rank test in (h); Benjamini/Hochberg multi-comparison
correction applied in (d), (f), and (g). Source data are provided as a Source data file.
****P <0.0001, ***P <0.001, **P <0.01, *P <0.05, ns - not significant (P >0.05). Scale
bar: 50μm.
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these dynamics, and behavior tended to account for more variance in
ACh and 5-HT dynamics than in calcium (Supplementary Fig. 6f).
However, the variance explained by behavior could not discriminate
odor identities, and removing the components explained by behavior
did not lower odor identity classification accuracy (Supplementary
Fig. 6e–g). Therefore, we conclude that while motionmodulates these

dynamics, it does not account for odor identity representation in our
analysis.

We further analyzed the correlation between motion and these
dynamics across multiple brain regions. Within individual flies, tem-
poral traces show clear correlations (Supplementary Fig. 6h). To
quantify these relationships, we calculated Pearson correlations at the
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voxel level across various time-delay conditions (Supplementary
Fig. 6i), indicating distinct correlation patterns among these signals.
Different brain regions exhibit varying time lags between these
dynamics and motion (Supplementary Fig. 6j). Quantitative analyses
show differences in both the average correlation (Supplementary
Fig. 6k) and the percentage of correlation peaks (Supplementary
Fig. 6l) across these dynamic signals at different time lags. Moreover,
the correlation between calcium and motion is comparable to that of
ACh but higher than that of 5-HT (Supplementary Fig. 6m, n). Average
correlations of individual brain regions display variability across these
dynamic signals (Supplementary Fig. 6o).

Low-dimensional manifolds uncover the characteristics of odor
representation
Low-dimensional manifolds offer additional insights into the proper-
ties of odor representation (Fig. 3d–f). We measured some character-
istics for quantitative analyses. During odor presentation, the
manifolds expand and subsequently contract, resulting in an increase
and subsequent decrease in the distance to the origin (Fig. 3h, top left).
CalciumandAChdynamics show largermaximumdistances compared
to 5-HT, indicating greater dynamic changes in the low-dimensional
space (Fig. 3h, top right). Comparing the time taken for themanifold to
contract to one-fifth of its maximum distance after odor delivery, ACh
returns the fastest, and calcium returns faster than 5-HT (Fig. 3h,
bottom left). However, the time taken to return to the random state is
similar for all signals (Fig. 3h, bottom right). We also measured inter-
class (Fig. 3i) and intra-class distances (Fig. 3j) of the manifolds. As a
result, 5-HT represents a lower maximum inter-class distance than
calcium and ACh, suggesting a poorer ability to distinguish odor
identities (Fig. 3i, top right). Calcium and ACh recover faster to one-
fifth of themaximum inter-class distance than 5-HT, with no significant
difference between the two (Fig. 3i, bottom left). Consistent with the
previous result of the distance to the origin, the time taken to return to
the random state is similar for all signals (Fig. 3i, bottom right). The
average intra-class distances for three signals are comparable (Fig. 3j).
Overall, calcium and ACh dynamics display similar properties in the
low-dimensional manifolds and outperform 5-HT in odor identity
representation.

The manifolds of three odors, OCT, MCH, and EA, also exhibit
distinct characteristics. In the calcium manifolds (Supplementary
Fig. 7a), EA has a shorter maximum distance to the origin and a faster
return than OCT and MCH. However, such distinctions are absent in
themanifolds ofAChand5-HT.OCTandMCH (O-M,bothnegative) are
harder to classify than other odor pairs for calcium and ACh, as the
maximum inter-class distance of O-M is lower and the recovering time
is shorter, especially for calcium (Supplementary Fig. 7b). No sig-
nificant differences are observed in the intra-class distance across
odors (Supplementary Fig. 7c). The disparate manifestation of EA and
the relatively low discrimination of O-M might be relevant to odor
preference (Supplementary Fig. 7d, e)45–48, which is an aspect of odor
perception better uncovered in higher-order brain regions30,55,56 and is

likely to be reflected in ourmultiple-brain-region analysis. This effect is
less evident for ACh and 5-HT than calcium dynamics. Two-odor
classification results across multiple scales are presented in Supple-
mentary Figs. 8, 9.

Ensembles of odor representation in physical space
We further explored the ensembles of odor representation in physical
space. First, we analyzed odor tuning across the brain, defined as the
difference in the AUC of the responses to a specific odor compared to
the other two odors. Voxels with significant tuning values were
retained as ensembles (Fig. 3k and Supplementary Fig. 10a). Subse-
quently, we calculated the standardized ratio of voxels with specific
tuning in different brain regions (Supplementary Fig. 10b, c), focusing
exclusively on brain regions within the community that encompasses
the majority of olfactory regions for each signal (Fig. 2e). The tuning
exhibits a distributed pattern for all dynamic signals.

Additionally, based on our manifold and odor classification ana-
lysis, we calculated the identification weight for each odor across
voxels and generated corresponding weight maps (Fig. 3l and Sup-
plementary Fig. 10d–f). The distributions of tuning and weight exhibit
clear similarities. For instance, both analyses indicate the strong role of
the MBML for ACh and the LH for calcium in the identification of OCT
(Supplementary Fig. 10a–f). Furthermore, all three signals suggest a
strong effect of the MBVL in the identification of EA (Supplementary
Fig. 10a–f).

Functional connectivity analysis also provides further insight into
olfactory representation ensembles. We measured the functional
connectivity of voxelswith high tuning to specific odors andgenerated
functional connectivity matrices (Supplementary Fig. 10g). Voxels
responding to different odor stimuli displayed different activity traces
(Supplementary Fig. 10g, right part). Correspondingly, voxels
responding to the same stimulus exhibited strong functional con-
nectivity, while the connectivity between voxel ensembles responding
to different stimuli was weak, resulting in three clear functional mod-
ules in the functional connectivity matrices (Supplementary Fig. 10g,
left part). This phenomenon is consistent across all three signals
(Supplementary Fig. 10g), confirming that voxel ensembles for each
signal are capable of odor identification.

We also discerned differences in the functional connectivity net-
works of voxel ensembles in physical space. We mapped the spatial
distribution of the strongest functionally connected edges (those with
top 10% weights) of a fly under three odor stimuli (Supplementary
Fig. 10h). The functional connectivity networks for three odors exhibit
differences in physical space, particularly in the location of core voxel
ensembles and the spatial extent of the voxel network. This phenom-
enon is observed consistently across all three signals (Supplementary
Fig. 10h). Statistical tests acrossmultiple flies and signals show that for
calcium andACh, the odorMCHhas a largerweighted coverage area in
the functional network compared to OCT (Supplementary Fig. 10i),
suggesting more long-range, large-weighted functional connectivity
edges in the MCH network than in the OCT network. While for 5-HT

Fig. 3 | Odor identity representation by G7f, rACh, and r5-HT across multiple
brain regions. a Accuracy maps averaged across flies. b Average accuracy in each
brain region (mean ± s.e.m). c Schematic of the dimensionality reduction method.
d–f Low-dimensionalmanifolds for G7f (d), rACh (e), and r5-HT (f) of a fly. Top and
middle: Each line represents the response in one trial. Bottom: Each line is the
average odor response of an odor identity. Top: Colors denote odor identities.
Middle: Colors denote the trial order. Bottom: Colors denote the time relative to
odor delivery. Manifolds in d and e are from the same fly. Arrows indicate con-
sistent scale across dimensions (units arbitrary).gVoxel-levelmultiple-brain-region
odor identity classification accuracy. P =0.09 for G7f and rACh; P =0.0003 for
rACh and r5-HT. h–j Manifold metrics. h Top left: Distance to the origin (mean ±
s.e.m). The opaque dashed lines sign the time for returning to the one-fifth of the
maximum distance. The translucent dashed lines sign the time for returning to the

random state. Top right: Maximumdistance. Bottom left: Time for returning to the
one-fifth of themaximumdistance. Bottom right: Time for returning to the random
state. i Similar to (h), but for inter-class distance. j Left: Intra-class distance (mean ±
s.e.m). Right: Statistics of intra-class distance. Box plot: center lines, median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range; each point
represents a fly in (g–j). k Maps of odor tuning. l Similar to (k), but for odor
identification weight. 10 flies co-labeled by G7f and rACh and 10 co-labeled by G7f
and r5-HT are analyzed. n = 20 flies for G7f, n = 10 flies for rACh, n = 10 flies for r5-
HT. Kruskal–Wallis test in (b); Two-sided Mann–Whitney U test and Benjamini/
Hochberg multi-comparison correction in (g–j). Source data are provided as a
Source data file. Detailed statistical results are also listed in the Source data file.
****P <0.0001, ***P <0.001, **P <0.01, *P <0.05, ns - not significant (P >0.05). Scale
bars: 50 μm.
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signals, EA displays a larger weighted coverage area than OCT
and MCH.

Integration of ACh and calcium dynamics improves odor
identity representation
Building on our observations of distinct odor responses and repre-
sentations across ACh, 5-HT, and calcium dynamics, we next asked
whether integrating specific neurochemical signals with calcium sig-
nals could enhance odor identity representation. We explored these
questions and came to the conclusion that integrating ACh rather than

5-HT dynamics improves odor identity representation by neuronal
activity.

By integratingAChor 5-HT signalswith calciumdynamics, we could
conduct odor identity classification utilizing the dual-channel data
(“Methods”). Initially, we observed accuracy increase in many individual
brain regions in the accuracymapwhen integrating ACh signals (Fig. 4a,
b). This was further validated by the voxel-level classificationwithin each
region (Supplementary Fig. 5d). Subsequently,we integratedAChsignals
from brain regions with accuracy gain (Fig. 4b) to the multiple-brain-
region responses of calcium signals and performed voxel-level multiple-
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Fig. 4 | IntegrationofAChdynamics improves theodor identity representation
by neuronal activity. a Map of decoding-accuracy gain averaged across flies.
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odor identity classification accuracies. d, e Low-dimensional manifolds by G7f (d)
and both channels (e) of the same fly as in Fig. 3d. Arrows are in arbitrary units but
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g Inter-class distance. h Intra-class distance. i Functional connectivity matrices
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Connectivity complementation (top, red rectangles) and emphasis (top, black
rectangles) toG7fby rAChare shown. Complementation is reflected in the different
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sions are similar for the two channels (bottom), and voxels with the greatest

increased connectivity gather in space (bottom, coral). j Similar to (i), but for the
LH. k Difference in increased deflation ratios within and between clusters of the
functional connectivity of rACh compared to G7f. l Average clustering coefficient
for rACh. m Average clustering coefficient difference between two channels.
n Node centrality distribution. o Distance of the node centrality distributions
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Two-sided Wilcoxon signed-rank test in (f–h); Benjamini/Hochberg multi-
comparison correction in (f–h). Source data are provided as a Source data file.
****P <0.0001, ***P <0.001, **P <0.01, *P <0.05, ns - not significant (P >0.05, not
shown in b, k–m, o). Scale bar: 50μm.
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brain-region odor identity classification. We found accuracy gain upon
integrating ACh signals at the multiple-brain-region level (difference
(mean ± s.e.m): 4.39% ± 0.94%; one-sidedWilcoxon signed-rank test: W-
value = 55, Effect size (rank-biserial correlation) = 1, P=0.00098; Fig. 4c).
This improvement is also evident in the manifolds (Fig. 4d, e; and Sup-
plementary Movie 1), where odor responses extend farther than single
signals and trials with different odor identities separate more distinctly
(Fig. 4f–h). To further validate the conclusion, we analyzed odor repre-
sentation and classification increasing odor number to 7 and also
observed accuracy gain (Supplementary Fig. 11). For comparisons, inte-
grating 5-HT did not yield similar accuracy gains (Supplementary
Figs. 5d and 12, and Supplementary Movie 1).

Further, we examined voxel-level functional connectivity networks
within specific brain regions to investigate the neural mechanisms
underlying the accuracy gain. Our goal was to identify differences
between regions with and without accuracy gain and determine the
possible source of the observed gain. We calculated functional con-
nectivitymatrices for each signal and arranged thematrices according to
theclustering in thecalciumchannel in several brain regions (Fig. 4i, j and
Supplementary Fig. 13a). The differencematrix was also obtained (Fig. 4i,
j andSupplementaryFig. 13a). Inbrain regionswithaccuracygain, like the
MBML, there are voxels with increased relative connectivity strength
(deflation ratio, seeMethods) both in andout of the clusters (Fig. 4i). The
increased relative connectivity strength in the clusters underlies an
emphasis of the connectivity structure in the ACh channel, while the
increase out of the clusters underlies a connectivity complementation to
the calcium channel. In contrast, regions without accuracy gain, like the
LH, only display obvious emphasis without high complementation
(Fig. 4j). Statistics of the difference between the mean of positive values
within and between clusters in the difference matrix validate this
observation (Fig. 4k). In regions with accuracy gain, the community
divisions (“Methods”) of the two channels exhibit similarities, with voxels
demonstrating increased connectivity clustering together in space
(Fig. 4i and Supplementary Fig. 13a). However, in regions without accu-
racy gain, although the community divisions are similar for the two
channels, voxels with increased connectivity are not spatially clustered
(Fig. 4j and Supplementary Fig. 13a). These phenomena are absent in the
networks of the resting state (Supplementary Fig. 13b).

Brain regions with accuracy gain display stronger clustering
(Fig. 4l) andmore similar clustering level to that of the calciumchannel
(Fig. 4m). Moreover, these brain regions have higher node hetero-
geneity for ACh (Fig. 4n and Supplementary Fig. 13c), along with more
similar node centrality distribution to calcium (Fig. 4o and Supple-
mentary Fig. 13c). These results suggest that while the functional
connectivity networks of the two signals in brain regionswith accuracy
gain show apparent complementation, their network properties are
similar, suggesting a degree of functional segregation and potential
rich information coding for both channels57. However, in regions
without gain (e.g., the LH), ACh displays lower clustering and a more
concentrated distribution of node centrality, indicating larger node
homogeneity and lower functional segregation (Fig. 4l–o; and Sup-
plementary Fig. 13c). The functional connectivity networks of 5-HT
show similar characteristics (Supplementary Fig. 12). The connectivity
complementation while maintaining the network characteristics
shows a local mismatch of ACh release and neuronal activity and
should relate to the accuracy gain.

We also analyzed odor representation and functional connectivity
on raw data and compared the results with and without denoising,
showing consistency of conclusions and the importance of denoising
for better uncovering some characteristics (Supplementary Fig. 14).

ACh exhibits higher temporal stability than calcium and 5-HT in
odor representation
We further investigated the temporal stability of odor representation
encoded by these distinct dynamic signals. We recorded consistent

odor responses in 180 trials (60 sessions) of each fly. We evenly par-
titioned the 60 sessions into four stages (S1, S2, S3, S4) and obtained
the low-dimensional manifolds for every stage (Fig. 5a). Analyzing the
properties of the low-dimensional manifolds, we observe that calcium
dynamics exhibit a gradual decrease in the maximum distance to the
origin and inter-class distance across stages, indicating a continuous
reduction in representational amplitude and odor discrimination
(Fig. 5b, c). In contrast, ACh representation remains stable, at least
during the first three stages, while the reduction in 5-HT representa-
tion occurs primarily between S1 and S2. Calcium exhibits a shift in the
returning location of sessions from S1 to S2, suggesting a potential
internal state change (Fig. 5a, d). However, this change is not observed
for ACh and 5-HT manifolds. Additionally, the average intra-class dis-
tances of all signals exhibit a decrease from S1 to S2, potentially indi-
cating a process of learning or habituation (Fig. 5e).

Overall, ACh dynamics exhibit a stable odor representation across
stages, while calcium displays a continuous and gradual change. 5-HT
shows reductions from S1 to S2, consistent with the fast decrease in
response happening only in several trials at the very beginning (Figs. 1d
and 2c).We further characterized the functional connectivity networks
of the three signals, assessing functional connection patterns, node
degrees, and community ratio across the four stages (Fig. 5f–j). The
results corroborate our findings from the analysis of the low-
dimensional manifolds. All these results indicate the stable odor
representation of ACh.

Odor representation in mushroom body neurons
To further validate our findings, we recorded odor responses of MB-
specifically labeled flies (Supplementary Fig. 15a, b) and analyzed odor
representation in these MB cholinergic neurons. First, we calculated
accuracy maps for calcium, ACh, and their integration, assessing the
accuracy gain from the integration compared to calcium alone (Sup-
plementary Fig. 15c, d). The MBPED and MBML exhibited accuracy
gains. Furthermore, we generated manifolds of olfactory representa-
tion within the mushroom body (Supplementary Fig. 15e, f). As
expected, the separation of odors was less pronounced compared to
the multiple-brain-region results. Nonetheless, integrating the
dynamics of calcium and ACh yielded higher odor classification
accuracy (Supplementary Fig. 15g) and better separation of odors in
the manifolds (Supplementary Fig. 15h, i). We also analyzed the tem-
poral changes of olfactory representation across the 2-h period but
observed no obvious alteration (Supplementary Fig. 15j, k).

As a result, the compensatory role of ACh dynamics in olfactory
representation to calciumdynamics remains evident in themushroom
body. However, the representation of both channels within the
mushroom body appears stable over the 2-h period, suggesting that
the temporal changes observed in calcium manifolds may originate
from other brain regions.

Discussion
High-throughput neuronal recording techniques have brought many
discoveries either in the spatial or the temporal domain1–10, inacces-
sible for localized studies. Understanding the spatiotemporal dynam-
ics and information representation of neuronal activity serves as a
fundamental step for a deeper and more comprehensive under-
standing of functions. In contrast, large-scale neuromodulator and
neurotransmitter dynamics still lack studying despite their vital role in
the neural system, due to technical limitations13. Therefore, abundant
mysteries might be hidden in these dynamics as their quantitative
relationship with neuronal activity in vivo remains elusive13,17,18,20. Our
current understanding of their functions, primarily derived from tar-
geted investigations, might be limited12. Moreover, information is
traditionally considered coded in neuronal activity and can be deco-
ded with high precision58. Neuromodulators and neurotransmitters
have been primarily understood as neuronal activity regulators rather
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Fig. 5 | ACh signals exhibit greater temporal stability in odor representation
and the functional connectivity network than calcium and 5-HT. a Average
manifolds of a fly across 4 stages. Each session includes 3 trials. Arrow lengths are in
arbitrary units but consistent across dimensions. Colors denote odor identities
(blue: OCT; red: MCH; orange: EA). The red, cyan, and yellow dots denote the
origins, return locations, and referencecenterpoints of themanifolds, respectively.
b–eMetrics of themanifold change across four stages. bMaximum distance to the
origin. cMaximum inter-class distance. d The x-coordinate of the return locations.
e Average intra-class distance. Left: Changes of the metrics across sessions. Right:
Statistics of the metrics across four stages for each indicator. f Functional con-
nectivity networks of the brain regions for each indicator during odor stimulation
in four stages. Consistent with Fig. 2e, the colors and widths of the edges indicate
connection strengths, and the colors of the nodes indicate olfactory (coral) and
non-olfactory (blank) regions. The dashed circles mark communities in Fig. 2e.

g The functional connection patterns of three indicators among four stages.
h Statistics of the degree distribution in functional connectivity networks of three
indicators among four stages. i Statistics of the average degree of the functional
connectivity networks among four stages. j Statistics of the community ratio in the
functional connectivity networks of three indicators among four stages. 10 flies co-
labeled by G7f and rACh and 10 flies co-labeled by G7f and r5-HT are analyzed.
n = 20 flies for G7f, n = 10 flies for rACh, n = 10 flies for r5-HT, mean ± s.e.m. Each
light-colored line represents a fly in (b–e), (i), (j). Two-sided Wilcoxon signed-rank
test in (b–e), (i), (j); Scheirer–Ray–Hare test (non-parametric two-way ANOVA test)
in (g); Two-sided Kolmogorov–Smirnov test in (h); Benjamini/Hochberg multi-
comparison correction applied in (b–e), (g–j). Source data are provided as a Source
data file. Detailed statistical results are also listed in the Source data file.
****P <0.0001, ***P <0.001, **P <0.01, *P <0.05, ns - not significant (P >0.05).
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than direct information carriers. However, the recent evidence of
dissociable dopamine firing and release and sensory-related fast cho-
linergic activities prompts a reevaluation of neuronal and neuro-
chemical information representation20,24,33,59.

The latest advancement in high-performance fluorescent neuro-
chemical indicators38,39,60 and microscopic techniques36,40–42,61 has
enabled us to investigate the spatiotemporal neuronal activities and
neurochemical dynamics andexplore their involvement in information
representation. To address these objectives, we focused on olfactory
processing as a context. Our imaging and analyses identified the
complementation between ACh and calcium signals in information
representation and functional connectivity networks, as well as the
temporal stability of ACh representation. Our findings extend previous
studies by providing an extensive description of olfactory repre-
sentation across such a large temporal and spatial scale encompassing
both neuronal activities and neurochemical dynamics, which may
complement existing frameworks of neural information representa-
tion. The view and findings can inspire further studies of the under-
lying mechanisms.

This observational study has some limitations. First, approxi-
mately 43 brain regions are recorded by imaging, and there are some
other important brain regions, like the antennal lobe, are not covered
due to the FOV restraint. Also, since we used pan-neuronally labeled
flies to perform a dynamic signal screen in this study, we could not
resolve single neurons or distinguish neuron types. Further investiga-
tions of genetically targeted circuits and neuron types combined with
targeted manipulations are necessary to further elucidate the
mechanisms underlying our findings and the causality between dif-
ferent dynamics. Large-scale sparse labeling can also greatly assist in
this endeavor52,62. Additionally, the extensive-surveying methodology
employed in our study may hold promise for uncovering new findings
in other areas, such as learning and memory, which have widespread
effects across the brain. Moreover, the simultaneous volumetric
recording of multiple indicators on a large scale also presents valuable
opportunities to investigate the interactions between different
neuromodulators63,64 and the coupling of other important processes65.

Methods
Fly stocks
Flies with pan-neuronal expression of jGCaMP7f and rGRAB_ACh-0.5
were of the genotype: w; UAS-rGRAB_ACh-0.5/+; nSyb-Gal4/UAS-
jGCaMP7f. Flies with expression of jGCaMP7f and rGRAB_ACh-0.5 in
the mushroom body were of the genotype: w; UAS-rGRAB_ACh-0.5/+;
OK107-Gal4/UAS-jGCaMP7f. Flies with pan-neuronal expression of
jGCaMP7f and rGRAB_HTR2C-0.5 were of the genotype: w; UAS-
rGRAB_HTR2C-0.5/+; nSyb-Gal4/UAS-jGCaMP7f. Wild type flies used in
Supplementary Fig. 7 were w1118 (isoCJ1). UAS-jGCaMP7f/+ was cros-
sed by UAS-jGCaMP7f and w1118 (isoCJ1). UAS-rGRAB_ACh-0.5 and
UAS- rGRAB_HTR2C-0.5were fromYulongLi’s Lab at PekingUniversity.
nSyb-Gal4 (BDSC: 51941), OK107-Gal4, UAS-jGCaMP7f 37, and w1118
(isoCJ1) were from Yi Zhong’s Lab at Tsinghua University. Flies were
raised on standard cornmeal medium with a 12-h light/12-h dark cycle
at 23 °C and 60% humidity and housed in mixed male/female vials.

Odor delivery
3-octanol (OCT; CAS# 589-98-0, Sigma-Aldrich), 4-methylcyclohexanol
(MCH; CAS# 589-91-3, Sigma-Aldrich), ethyl acetate (EA; CAS# 141-78-
6, ThermoFisher Scientific), 1-Octen-3-ol (1-OCT; CAS# 3391-86-4,
Sigma-Aldrich), Benzaldehyde (BEN; CAS# 100-52-7, Sigma-Aldrich),
Isopentyl acetate (IA; CAS# 123-92-2, Alfa Aesar), and Methyl salicylate
(MS; CAS# 119-36-8, Sigma-Aldrich) diluted 1.5:1000, 1:1000, 1:1000,
1:500, 1:500, 1:1000, and 1:1000 in mineral oil were used as odors66.
Odors were delivered for 5 s with 30 s inter-stimuli intervals across 180
trials (60 sessions) in a pseudo-random order avoiding consecutive
presentations of the same odor.We used a custom-made odor delivery

apparatus (supplementary Fig. 16)31,55,66,67. Air with the same airflowwas
delivered to flies during intervals.

Control experiments for assessing neural responses to brief
air-puffs
Control experiments were conducted to assess the effect of the brief
air-puffs at the start of odor stimuli. Air through mineral oil was
delivered as control. 9 trials of OCT, MCH, EA, and the control were
delivered to flies in a pseudo-random order. 3 flies co-labeled with G7f
and rACh were tested and their responses to the four stimuli were
compared (Supplementary Fig. 1a–d).

Odor avoidance test
Two- to five-day-old flies were used for the odor avoidance tests
(Supplementary Fig. 7d, e). Flies were placed at the choice point of a T
maze, where they were given 1min to choose between the odor (OCT/
MCH/EA) and air. We then counted the flies in each arm of the maze
and calculated a performance index (PI). An index of 0 corresponded
to a 50:50 distribution between the odor and air, while an index of
100% corresponded to complete avoidanceof the odor. Additionally, a
negative PI indicated a preference for the odor over air. The diluted
odor was used in the same way as in the previous experiments. Two
groups of the same stock were tested successively, and the side of the
test tube with odor was alternated.

Kinetics of rACh and r5-HT
Kinetics of the two indicators were measured on HEK293T cells. The
confocal high-speed line scanning mode (1024Hz) was used to record
the fluorescence signal when the cells were locally puffed with drugs
via a glass pipette positioned in close proximity to cells. To measure
τon, 10μM ACh and 10μM 5-HT was puffed on the cells expressing
rACh and r5-HT, respectively; to measure τoff, 10μM scopolamine was
puffed on cells bathed in 100μM ACh, and 100μM SB242084 was
puffed on cells bathed in 10μM 5-HT.

Fly preparation for functional imaging
Three- to eight-day-old female flies were selected for brain imaging. To
prepare for imaging, flies were anesthetized on ice and mounted in a
3D-printed plastic disk that allowed freemovement of the legs66,68. The
posterior head cuticle was opened using sharp forceps (5SF, Dumont)
at room temperature in fresh saline (103mM NaCl, 3mM KCl, 5mM
TES, 1.5mM CaCl2, 4mM MgCl2, 26mM NaHCO3, 1mM NaH2PO4,
8mM trehalose, and 10mMglucose (pH 7.2), bubbledwith 95%O2 and
5% CO2)

66,68. After that, the fat body and air sac were also removed
carefully. The position and angle of the flies were adjusted to keep the
posterior of the head horizontal, and the window was made big and
clean, for the convenience of multiple-brain-region observation. Brain
movementwasminimizedby addingUVglue around theproboscis54,69.
After preparation, flies were placed under the objective for two-
photon imaging.

Multiple-brain-region two-photon volumetric imaging
by 2pSAM
We used a 25×/1.05 NA water immersion objective (Olympus) in this
experiment. Min-NA 2pSAM was adopted to achieve an effective
depth of focus of 100μm36, covering about half of the axial range of
the fly brain (~80– 180μm under the surface). The field of view was
458.7μm×458.7μm(512pixels × 512pixels), covering thewhole lateral
range of the central brain and some part of the optic lobe. An excita-
tion wavelength of 1035 nm was used for two-color imaging. The
power of the excitation light was set at 25–35mW through the ~2 h
recording. For detection, a 525-nm filter (MF525-39, Thorlabs) was
used for the green channel, and a 610-nm filter (ET610/75m, Chroma)
was used for the red channel. The acquiring rate was 30Hz, and a
13-angle scanning was adopted.
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Image processing pipeline
Preprocessing—registration and denoising. We conducted pre-
processing steps for the images of each angle. First, we performed
motion correction using a piecewise rigid registration algorithm36,70.
Then, we applied denoising algorithms to enhance the signal-to-noise
ratio, which was essential for our voxel-based analyses. We utilized
DeepCAD-RT in most of our analyses due to its superior capability in
detecting subtle signal changes40,41. To improve the recovery of tem-
poral characteristics in manifold analyses, we implemented a new
algorithm SRDTrans42. We trained customized denoising models for
each channel of each fly.

Volume reconstruction. We utilized VCD-Net for reconstruction to
accelerate the process71. First, we sampled about 2% of the frames for
reconstruction36. The reconstructed volumes together with the images
of each angle served as training sets. Subsequently, all the volumesof an
experiment were efficiently reconstructed using VCD-Net within a few
hours. The reconstructed volumes were 256 pixels × 256 pixels × 25
pixels, with a lateral resolution of 1.79μm and an axial resolution of
4μm.This resolutionwas decided to strike a balance between achieving
high resolution and managing the total data size for subsequent ana-
lyses. The temporal rate of volumes was 30Hz and 2.3Hz with and
without the sliding-window reconstruction method, respectively.

Alignment to atlas. TheDrosophilabrain atlaswas sourced fromVirtual
Fly Brain, the version used in a previous work3. The alignment was per-
formed using landmarks with ImageJ (https://imagej.net/plugins/name-
landmarks-and-register)54. We used the red channel for registration, as
the structure of this channelwasmoredistinct. An eroded atlas, inwhich
the mask of each region was eroded, was used to extract brain regions,
preventing incorrect assignment of edge voxels to regions. While com-
pleting volume registration in the previous steps, we only aligned the
first volume to the atlas, thus aligning the entire stack.

Temporal trace extraction. We extracted the temporal traces of each
voxel. For the computation of ΔF/F, a sliding window was used. For
each frame, the mean of the lower 30% intensity of the previous 200
frames (at 2.3 Hz)was taken as F0, andΔF/Fwas computed as (F−F0)/F0,
in which Fwas the current intensity of the voxel. TheΔF/F of eachbrain
region was taken as the average of the ΔF/F of the voxels within the
region. Since the odor responses exhibited persistence beyond the
duration of odor delivery, we extended the timewindow for extracting
these responses. Specifically, the selected timewindows encompassed
the period from the onset of the response to its decay to less than half
of the peak magnitude. In most of our analyses, as the dynamics of r5-
HTwere slower, the timewindowswere approximately 8 s, 8 s, and 16 s
(20 frames at 2.3 Hz, 2.3 Hz, and 1.15 Hz) for G7f, rACh, and r5-HT,
respectively. In the case of odor identity classification and manifold
analyses, the timewindowswere set to approximately 12 s (15 frames at
1.15 Hz) and 33 s (40 frames at 1.15 Hz) after odor delivery for all signals.

The map of responsiveness
For each fly, the Pearson correlation between ΔF/F concatenated
across 180 trials and stimulus (binary sequence) was calculated for
each voxel in each channel to obtain the maps of responsiveness
(Fig. 2a). Only significant correlations (P <0.05, using the Python
package scipy.stats.pearsonr) were recorded. The maps of individual
flies were aligned and averaged to generate a summary map. The
average of the top 20% correlation values for each region was calcu-
lated to make comparisons (Supplementary Fig. 1f).

The map of response intensity
For each trial, the standard deviation of ΔF/F in 8 s (G7f and rACh) and
16 s (r5-HT) since odor delivery was calculated as the response inten-
sity. To create a map, we calculated the average response intensity for

each voxel across trials. The maps of individual flies were aligned and
averaged to generate a summary map, as shown in Fig. 2a. The
response intensity of each region was the average of the voxels within
the region (Supplementary Fig. 1h). Other metrics usually used for
response intensity, like the AUC, yielded similar results (Supplemen-
tary Fig. 2).

Phase delay and pulse width
For each fly, phase delays and pulse widths were calculated for brain
regions in each channel using the trial-averaged ΔF/F (Fig. 2d). We
refined the analyses by including only the olfactory brain regions
demonstrating high responsiveness (Supplementary Fig. 1e, f). The
phase delay was the time-lapse from the start to the peak of the
response. The pulse width was the full width at half maximum.

Brain-region-level functional connectivity network analysis
Brain-region-level functional connectivity networks of the left-side
brain regions and the central complex recorded (23 brain regions)
were analyzed.

Construction of functional connectivity networks. To construct
brain-region-level functional connectivity networks during odor sti-
mulation, we first spliced the response records for each voxel over the
time window of 180 trials. We then averaged all voxels within brain
regions to obtain the average response record for each brain region
and calculated the Pearson correlation of the averaged response
records between each pair of brain regions. The above process was
performed for each signal, such that the correlationmatrices shaped in
23 × 23 dimensions were generated for G7f, rACh, and r5-HT, respec-
tively. Each correlation matrix was used to construct a weighted
undirected network (Fig. 2e), where the nodes represented brain
regions, and the edges represented the correlation values between
brain regions. We used the Louvain and greedy algorithms to detect
the community structure in the functional connectivity networks and
obtained consistent results. The detected communities formed by
tightly connected brain regions were labeled with dashed circles
(Fig. 2e). The functional connectivity networks during the resting state
were constructed using the dynamic traces with a temporal length
around 10min. before the start of odor stimulation (Supplemen-
tary Fig. 3a).

Comparison of functional connectivity patterns in physical space.
We examined changes in the distribution of functional connectivity in
physical spaceusing thenon-parametricmultifactorANOVA test called
the Scheirer–Ray–Hare test. Specifically, we arranged the functional
connections of eachfly during odor stimulation and the resting state in
the same order and grouped data from multiple flies, thus testing
whether odor stimulation was a factor that significantly affected the
brain-region-level functional connectivity (Fig. 2f). In the same way,
sorting and grouping data from G7f, rACh, and r5-HT allowed testing
whether different signals exhibited significantly distinct functional
connectivity patterns. Figure 2f displayed the functional connectivity
between each pair of brain regions averaged across multiple flies,
sorted by the connection strength of G7f in the resting state.

Comparison of functional connectivity in network topology. We
analyzed distinctions in the topological characteristics of the brain-
region-level functional connectivity networks across different signals
and states. The degree of a nodewas calculated as the total connection
strength of the edges connected, and the average degree of a network
represented the average degree across all nodes. To assess the dif-
ferences in the distribution of node degrees (Fig. 2g) and the average
degree values (Supplementary Fig. 3b, d) across different signals and
states, we used the Kolmogorov–Smirnov test and the Wilcoxon
signed-rank test, respectively. Additionally, we calculated the
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community ratio, which was defined as the connection strength ratio
of the community containing most olfactory regions, to reflect the
significance of the community (Fig. 2h and Supplementary Fig. 3c). A
larger community ratio indicated a more influential role of the given
community in the network.

Accuracy map
The volume was divided into small blocks of 4 × 4 × 2 voxels. The data
form within each block was trials × [voxels × frames × channels]. We
first performed PCA (sklearn.decomposition.PCA) and kept the
dimensions explaining 90% variance. Then, SVM (sklearn.svm) was
applied to classify the trials according to odor identities, and the
accuracy was obtained by 5-fold cross-validation. The maps of indivi-
dual flies were aligned and averaged to generate a summary map
(Fig. 3a and Supplementary Fig. 1i). The accuracy of each region was
the average of the voxels within the region (Fig. 3b and Supplementary
Fig. 1j). The map revealing the accuracy gain was generated by sub-
tracting the accuracy map of G7f from the accuracy map of the dual-
channel data (Fig. 4a and Supplementary Fig. 12a). We employed PCA
and SVM on frames 1-14 (for odor response was high during this per-
iod) from the start of odor delivery.

Voxel-level odor identity classification
Odor identity classification in each brain region. The data within
each region was organized in a [trials × frames] × [voxels × channels]
format. To reduce the dimensionality, we initially used PCA. Next, we
employed LDA (sklearn.discriminant_analysis.LinearDiscriminantA-
nalysis.LDA) to identify a stable low-dimensional space where odor
identity was well-represented. The data was then reshaped as trials ×
[frames × LDA dimensions]. SVM was utilized for trial classification,
and the accuracy was determined by 5-fold cross-validation. It was
worth noting that the classification accuracy varied based on the
variance threshold used in the PCA step (Supplementary Fig. 4a, b). A
threshold of 0.8 exhibited optimal performances for almost all
regions and signals and was selected. The threshold was not sensitive
and could be adjusted. We employed PCA and SVM on frames 1-14,
and LDA on frame 3 from the start of odor delivery (for odor response
was high on frames 1-14 and was almost the highest on frame 3).
The parameters were not sensitive within a range. For odor
identity representation analysis of the mushroom body cholinergic
neurons, the MB was analyzed as a single brain region using the
method above.

Odor identity classification across multiple brain regions. First, for
single-channel classification, a brain-region mask was applied to
selectively choose the voxelswithin the community containingmostof
the olfactory regions. For dual-channel classification, the brain-region
mask for the rACh or r5-HT channel was the brain regions with accu-
racy gain, either in the average accuracy or the accuracy of the voxel-
level classification (Fig. 4b; and Supplementary Figs. 5d and 12b). Then,
to handle the higher dimensionality of multiple-brain-region data
compared to single-region data, we implemented an additional block-
wise PCA step prior to the steps of odor identity classification in each
brain region. The volume was divided into 10 × 10 × 10 blocks. Within
each block, PCA was carried out while retaining dimensions account-
ing for 90% of the variance. When dealing with dual-channel data, this
approach was independently applied to each channel, and the result-
ing outputs were consolidated for the subsequent steps. We observed
that the classification accuracy varied with the number of dimensions
retained after the second PCA step (Supplementary Fig. 4c–f). The
accuracy became stable after surpassing a certain threshold of
dimensions. Hence, we set the threshold at 25 for optimal results. We
employed PCA and SVM on frames 1-14, and LDA on frame 3 from the
start of odor delivery. We utilized the two denoising algorithms,
SRDTrans (Supplementary Fig. 4c, d) and DeepCAD-RT

(Supplementary Fig. 4e, f), and obtained similar results and robust
accuracy gain. The results of SRDTrans were analyzed.

Brain-region-level odor identity classification
The average ΔF/F of single brain regions were consolidated for classi-
fication. The steps were similar to odor identity classification in each
brain region. The variance threshold of the PCA step was set to 0.998
for optimal performance (Supplementary Fig. 4g, h).

Manifolds
For odor identity classification across multiple brain regions, we
applied the PCA and LDA transformations to all frames to capture the
low-dimensional dynamics in the LDA space. This approach allowed us
to observe that the responses of individual trials within this low-
dimensional space manifested as curved traces, which collectively
formed a manifold. We obtained the manifold from 2 s before the
onset of odor stimuli to 33 s thereafter to characterize the whole
process of odor responses, starting from and returning to a random
state. Each trace started from the common state and extended in dif-
ferent directions, symbolizing the essence of various odor identities.
To visualize the process of extending and returning clearly, we aver-
aged the traces with the same odor identity and colored the average
tracewith the time-lapse relative to odor delivery (Figs. 3d–f, 4d, e; and
Supplementary Fig. 12d, e).

Manifold analysis
We aligned and combined the manifolds of the testing sets in each fold
andexamined the characteristics of the combinedmanifold. The average
traces of each odor identity were used to measure the distance to the
origin and the inter-class distance. The distance to the origin referred to
the distance between the locations of a specific time point and the
average location of the start time point (2 s before the onset of odor
stimuli) in theLDAspace. The inter-classdistance referred to thedistance
ofodorpairs (O-M:OCTandMCH,O-E:OCTandEA,M-E:MCHandEA) at
each time point. The intra-class distance referred to the average distance
between the traces with the same odor identity at each time point. The
return time was evaluated as the time-lapse for distance to the origin or
intra-class distance to recover to the random level (the average value of
29–30 s) from the start of odor stimuli. The average intra-class distance
was calculated within 12 s after odor delivery. The values of each odor
were compared to analyze the representational distinctions among odor
identities (Supplementary Fig. 7a–c). The average value of all odors was
evaluated to analyze the representational distinctions among indicators
(Figs. 3 and 4; and Supplementary Fig. 12).

Functional connectivity network analysis within brain regions
Construction of functional connectivity networks within brain
regions. To construct a functional connectivity network within each
brain region, we first spliced the response records for each voxel of a
given brain region over the time window of 180 trials. We then calcu-
lated the Pearson correlation of the response records between each
pair of voxels and generated anN ×N correlationmatrix, N referring to
the number of voxels in a given brain region. Thus, a G7f matrix and a
rAChmatrix were obtained for each brain region of each fly co-labeled
by G7f and rACh (Fig. 4i, j); a G7f matrix and a r5-HT matrix were
obtained for each brain region of each fly co-labeled by G7f and r5-HT
(Supplementary Fig. 12i, j). We used all the N voxels of a given brain
region as nodes and retained the top 30% correlations in the matrix as
edges, thus obtaining a weighted undirected network for each region.
Wedisplayed the constructed networks of eachbrain region according
to the relative position of each voxel in physical space,where the edges
were shown in gray, and the nodes were colored by the community
division (using the Louvain algorithm) of the network (Fig. 4i, j; Sup-
plementary Figs. 12i, j, and 13a, b). Seven brain regions were selected
from different neuropils of the fly brain (Supplementary Table 1) to
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examine their functional correlation matrices and networks during
odor stimulation (Supplementary Fig. 13a) and the resting state (Sup-
plementary Fig. 13b) for rACh and G7f.

Comparison of functional connectivity in physical space. In order to
compare the neurochemical (rACh or r5-HT) and neuronal (G7f)
functional connectivity, we calculated the deflation ratio as
ðM �MÞ=M, where M and M denote the correlation matrix of G7f (or
rACh, r5-HT) and its average value. ThedifferencematrixΔwasdefined
as the difference between the deflation ratio of G7f and rACh (or r5-
HT), which was calculated as:

Δ =
MN � MN

MN

� MC � MC

MC

ð1Þ

WhereMC andMC denote the correlationmatrix of G7f and its average
value,MN andMN denote the correlation matrix of rACh or r5-HT and
its average value (Fig. 4i, j; Supplementary Figs. 12i, j, and 13a, b). The
neurochemical and difference matrices were sorted according to the
clustering of the G7f matrix, so that the black boxes marked the most
prominent functional connections in the G7f matrix, while the outside
of the black boxes represented the correlations between different
clusters (Fig. 4i, j). The red boxes in Fig. 4i signed the functional
connections highlighted by the rAChmatrix that were not emphasized
in the G7f matrix, suggesting the connectivity complementation. We
showed the nodes involved in around top 1% correlations of the
difference matrix Δ in coral color and the remaining nodes in blue in
the networks (Fig. 4i, j; Supplementary Figs. 12i, j, and 13a, b). This
reflected whether the connections emphasized by ACh/5-HT gathered
together in physical space. We designed a metric Δ+

w � Δ+
b to measure

connectivity complementation. The metric Δ+
w � Δ +

b was defined as
thedifferencebetween themeanofpositive valueswithin andbetween
clusters in the differencematrixΔ. The results showed that this metric
was always greater than 0. The smaller the metric Δ +

w � Δ+
b , the more

relative connectivity complementation there was (Fig. 4k and
Supplementary Fig. 12k). All nine brain regions with accuracy gain
and four without accuracy gain were compared for rACh. The
Wilcoxon signed-rank test was used to detect whether themetricΔ +

w �
Δ +
b of each brain region with accuracy gain was significantly less than

the average level of the selected brain regions without accuracy gain,
i.e., LH, EPA, AOTU, and IVLP. Although for r5-HT, only the MBVL
exhibited accuracy gain (Supplementary Fig. 12b), we performed the
same test as rACh.

Comparison of functional connectivity in network topology. In
order to compare the topological characteristics between neuronal
and neurochemical functional connectivity networks, we measured
the average clustering coefficient and the node centrality (degree
centrality) distribution. The clustering coefficient C was a measure of
the degree to which nodes clustered together. In a network with node
vi, the local clustering coefficient Cvi

was calculated as
Cvi

=2 � EðviÞ =kðviÞ � ½ kðviÞ � 1�, where EðviÞ was the number of edges
between the neighbors of node vi, and kðviÞ was the degree of node vi,
i.e., the number of edges connected to it. The global clustering coef-
ficient Ch i represented the average of the local clustering coefficient of
all the nodes. We calculated the global clustering coefficient as
Ch i= 1

N

PN
i = 1Cvi

, N referring to the number of nodes.
We calculated the average clustering coefficients of the functional

connectivity networks for different signals in brain regions with and
without accuracy gain (Fig. 4l and Supplementary Fig. 12l). The larger
the average clustering coefficient was, the stronger the nodes in the
functional connectivity network clustered together locally. We then
measured the difference ΔClustering between the average clustering
coefficients of neuronal and neurochemical functional connectivity
networks (Fig. 4mandSupplementary Fig. 12m).We also calculated the

probability density function (PDF) and cumulative distribution func-
tion (CDF) of the degree centrality of nodes in neuronal and neuro-
chemical functional connectivity networks in brain regions with and
without accuracy gain (Fig. 4n; Supplementary Figs. 12n and 13c). A
single-peaked PDF indicated that most nodes in the network had
similar degree centrality, in contrast a bimodal distribution indicated
that the nodes in the network had more heterogeneity in their attri-
butes. The difference between the degree centrality distributions of
different signals was measured by the Wasserstein distance72 (Fig. 4o
and Supplementary Fig. 12o). We also used another distance function
called the Energy distance and obtained similar results73. TheWilcoxon
signed-rank test was used to detect whether the above topology
properties of each brain region with accuracy gain for rACh were sig-
nificantly higher or lower than the average level of the selected brain
regions without accuracy gain, i.e., LH, EPA, AOTU, and IVLP. Although
for r5-HT, only MBVL exhibited accuracy gain (Supplementary
Fig. 12b), we performed the same test as rACh.

Ensemble analysis
Odor tuning. Odor tuning was defined as the difference in the AUC of
responses to a specific odor compared to the other two odors. Voxels
with significant tuning values were recorded. The maps of individual
flies were aligned and averaged to generate a summary map (Fig. 3k).
The standardized ratio of voxels with specific tuning in different brain
regions within the community encompassing the majority of olfactory
regions for each signal was calculated for comparison (Supplementary
Fig. 10b, c).

Odor identification weight. The transformation matrices of the two-
step PCA and LDA (see Odor identity classification across multiple brain
regions) were multiplied to obtain the maps of odor identification
weight. The maps of individual flies were aligned and averaged to gen-
erate a summary map (Fig. 3l). The standardized ratio of brain regions
were calculated the same as Odor tuning (Supplementary Fig. 10e, f).

Functional connectivity. Voxels with high tuning to each odor were
collected, and the Pearson correlations between the dynamics of these
voxels were calculated to generate the functional connectivity matrices
for G7f, rACh, and r5-HT (Supplementary Fig. 10g). Each functional
connectivitymatrix was organized based on hierarchical clustering, with
the average traces of each voxel corresponding to the three odors dis-
playing on the right side according to this ordering (Supplementary
Fig. 10g). We mapped the spatial distribution of the strongest func-
tionally connectededges (thosewith top 10%weights) of each functional
connectivity matrix under three odor stimuli, i.e., OCT, MCH, and EA
(SupplementaryFig. 10h).Tocompare theweightedcoverageareaof the
functional connectivity networks for each odor stimulus, the weighted
distancewas calculated as the spatial distancebetweenvoxelsmultiplied
by the functional correlation between them (Supplementary Fig. 10i).

Temporal changes of manifolds
To analyze the temporal changes, the 60 sessions throughout the
experiment were divided evenly into four stages, i.e., S1: Sessions 1–15,
S2: Sessions 16–30, S3: Sessions 31–45 and S4: Sessions 46–60. We
aligned and combined the manifolds of each fly to facilitate the fol-
lowing analyses. The low-dimensional traces of the corresponding
sessions formed themanifolds of each stage. The characteristics of the
manifolds at each stage were assessed. Distance to the origin, inter-
class distance, and intra-class distance were measured as described
above. Additionally, we examined the return locations (the average
location of 29–30 s from the start of odor stimuli) of the sessions. We
measured the x- and y-coordinates of the return locations and the
distances between the return locations and the average location of the
start time point (2 s before the onset of odor stimuli). Intra-class dis-
tance was measured for every three consecutive sessions, and other

Article https://doi.org/10.1038/s41467-025-63823-2

Nature Communications |         (2025) 16:8638 14

www.nature.com/naturecommunications


metrics were measured for every session. The average values of each
stage were compared (Fig. 5a–e).

Temporal changes of functional connectivity networks
Brain-region-level functional connectivity networks for each stage
were generated using the abovementioned method. We examined
changes in the distribution of functional connectivity in physical space
over time using the Scheirer–Ray–Hare test (Fig. 5g), and evaluated
changes in the topological features of the functional connectivity
networks. The changes in degree distribution (Fig. 5h) and average
degree values (Fig. 5i) of the functional connectivity networks were
examined using the Kolmogorov–Smirnov test and the Wilcoxon
signed-rank test, respectively. We further examined whether the
community structure of the functional connectivity networks for each
signal changed significantly over time by calculating the community
ratio (Fig. 5j).

Motion analysis
We captured videos of fly abdomens and extracted the motions by
calculating the absolute differences between consecutive frames
(Supplementary Fig. 6a). The resultingmotion energy, averaged across
the FOV, was then correlated with the stimulus presented to the flies
(binary sequence) using the Pearson correlation (Supplementary
Fig. 6b). To match the temporal resolution and periods of the motion
and neural dynamics, we downsampled the videos and extracted 12 s
time windows from the 180 trials. PCA was applied to reduce the
dimensionality and extract the behavioral features (Supplementary
Fig. 6c). We retained the first 30 PCs. SVM was utilized to classify
stimulus periods and intervals aswell as odor identities based on these
behavioral features (Supplementary Fig. 6d). Behavior during odor
stimulation (5 s) was used in the classification. We conducted a label
shuffling as a negative control and evaluated accuracies using 5-fold
cross-validation. Next, we used the Ridge regression to predict the first
30 PCs of themultiple-brain-region dynamics from behavior, stimulus,
or both (Supplementary Fig. 6e–g). Stimulus refers to the trial-
averaged responses to each odor identity. R2 was assessed by 5-fold
cross-validation. We used the partial PCs explained by behavior and
the residual after subtracting this explained part to conduct odor
identity classifications (Supplementary Fig. 6g). The first 30 PCs were
employed, following the same classification method as using the
behavioral features.

The traces of motion and neural dynamics in the same fly during
the same time period indicated some correlation (Supplementary
Fig. 6h). To quantify the correlation, we calculated the Pearson cor-
relations betweenmotion and neural signals (G7f, rACh, and r5-HT) at
the voxel level for different time-delay conditions (Supplementary
Fig. 6i). We made neural dynamic traces differentially leading or
delaying motor traces and then calculated the correlation between
them. The temporal shift between neural signals and motion ranged
within ±1 s at intervals of 0.1 s. Therefore, positive values of the hor-
izontal coordinate in Supplementary Fig. 6i represent neural
dynamics delayed from movement, while negative values represent
neural dynamics advanced to movement. Correlations at the voxel
level were averaged across each brain region and sorted by the tem-
poral order of calcium signals (Supplementary Fig. 6j). We then cal-
culated the average cross-correlation for each time-delay condition
(Supplementary Fig. 6k), and measured the proportion of correla-
tions above the mean for each delay condition (Supplementary
Fig. 6l). To compare the three dynamics, the probability distributions
of correlations between movement and neural dynamics (G7f, rACh,
and r5-HT) for 23 brain regions were displayed (Supplementary
Fig. 6m). The average correlations for three dynamics were compared
and tested using the Wilcoxon signed-rank test (Supplementary
Fig. 6n). We further compared the correlations across brain regions
(Supplementary Fig. 6o).

Statistics
Results of all statistical testswere listed in the Source data, providing the
mean and standard error (SEM), statistic, effect size, andpvalue.Most of
the statistical tests were performed using Python packages. Considering
the small sample sizes, we selected non-parametricmethods in themain
text: Mann–Whitney U test for unpaired comparisons of two groups
using pingouin.mwu and scipy.stats.mannwhitneyu; Wilcoxon signed-
rank test for paired comparisons using pingouin.wilcoxon and scipy.s-
tats.wilcoxon; Kolmogorov–Smirnov test for comparisons of the dis-
tribution of two groups using scipy.stats.ks_2samp; Kruskal–Wallis test
(the non-parametric version of ANOVA) for comparisons of multiple
groups using pingouin.kruskal; and Scheirer–Ray–Hare test used as the
non-parametric two-way ANOVA test (https://github.com/jpinzonc/
Scheirer-Ray-Hare-Test.git). For data passing the distribution normality
test (pingouin.normality), the corresponding parametric tests were also
performedwith results included in the Sourcedata. Theparametric tests
yielded similar results, which further solidified our conclusions.We used
two-sided tests to show the difference of groups and used one-sided
tests to examine whether the specific group of data showed a sig-
nificantly higher/lower level compared to the other group or a certain
threshold. We included multi-comparison corrections to mitigate the
risk of false positives using statsmodels.stats.multitest.multipletests,
selecting the Benjamini/Hochberg method (fdr_bh). Statistical tests of
the behavioral experiment results in Supplementary Fig. 7d, e were
performed in GraphPad Prism.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedata of an example fly generated in this study have beendeposited
on OneDrive (https://mailstsinghuaeducn-my.sharepoint.com/:f:/g/
personal/fjq19_mails_tsinghua_edu_cn/EtZeYbE6qfFDpNpT_uv4Mi8Bi
AGpYAnsJEAz9RsjXmvZdw?e=asuQ30). The entire dataset with a total
size of 5 TB, which includes the extracted neuronal and neurochemical
traceswithin the 3D volumes of 10 flies co-labeled byG7f and rACh and
10 flies co-labeled by G7f and r5-HT, will be open-sourced as an
important resource for the neurobiology and computational neu-
roscience communities. The link for data access will be provided on
our GitHub page. Source data are provided with this paper.

Code availability
The codes for data analysis are available on https://github.com/
jqfan77/Dual_color_fly_brain_imaging_2pSAM_analysis.
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