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 19 

Summary 20 

Deciding when to move is a universal aspect of behavior. Pharmacological studies implicate 21 

the neurotransmitter dopamine as a regulator of self-timed movements, with increased 22 

dopamine availability generally leading to earlier movements, as if speeding an internal clock. 23 
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How dopamine affects self-timed movements is unclear; a recent study even suggested that 24 

increased activity in nigrostriatal dopamine neurons (DANs) is associated with slower 25 

internal timing1. Here we show the dynamics of DAN activity control the timing of self-timed 26 

movements in mice. Animals were trained to make a self-timed lick several seconds after a 27 

start-timing cue. Movement times were highly variable from trial-to-trial, typical for self-28 

timed actions2-6. Higher pre-trial DAN signals predicted earlier movements, consistent with 29 

pharmacological studies. However, surprisingly, DAN signals ramped-up over seconds 30 

following the start-timing cue, with the steepness of ramping predicting the trial-by-trial 31 

movement time. Steeply ramping signals preceded early lick-times whereas shallow ramping 32 

preceded later lick-times, reminiscent of a ramp-to-threshold process. Optogenetic DAN 33 

activation during the timed interval caused systematic early-shifting of self-timed 34 

movements, whereas inhibition caused systematic late-shifting. These results reveal a novel, 35 

causal role for dynamic DAN activity unfolding over seconds-long timescales in controlling 36 

the moment-by-moment decision of when to move. 37 

 38 

Main Text 39 

Body movements can occur as short-latency reactions to external stimuli, but many movements 40 

are generated without obvious, abrupt prompting7. For example, self-timed movements come after 41 

a reference-timing cue, but their exact timing is highly variable from trial-to-trial relative to that 42 

cue2-6. Evidence from lesion studies and human disease implicate the nigrostriatal system in the 43 

generation of self-timed movements4,5,8,9, and pharmacological manipulations of the dopamine 44 

neurotransmitter causally influence movement timing5,8,9,10,11. For example, decreased dopamine 45 

availability/efficacy (e.g., Parkinson’s disease, neuroleptic drugs) produces late-shifted self-timed 46 
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movements4,8, whereas high dopamine (e.g., amphetamines) produces early-shifted movements10,11, 47 

suggesting the activity of nigrostriatal dopamine neurons (DANs) may affect the speed of the 48 

internal clock.  49 

 50 

Here, we exploited the inherent variability in the timing of self-timed movements to examine how 51 

the moment-to-moment activity of nigrostriatal DANs relates to the timing of these movements. 52 

We trained head-fixed mice to make self-timed movements to receive juice rewards (Fig. 1a). 53 

Animals received an audio/visual start-timing cue and then had to decide when to lick in the 54 

absence of further cues. Animals only received juice if they waited a proscribed interval following 55 

the cue before making their first-lick (3.3s in most experiments). First-lick timing exhibited a broad 56 

distribution spanning several seconds, as expected from previous studies3,4,5,6(Fig. 1b, Extended 57 

Data Figs. 1a,b). As mice executed the task, we employed fiber photometry to record the activity 58 

of genetically-defined DANs expressing the calcium-sensitive fluorophore GCaMP6f (12 mice, 59 

substantia nigra pars compacta (SNc); Fig. 1c-e, Extended Data Figs. 2,3,4a). We controlled for 60 

mechanical/optical artifacts by simultaneously recording fluorescence modulation of a co-61 

expressed, calcium-insensitive fluorophore, tdTomato (tdt) (Fig. 1e), as well as body movements 62 

detected by neck EMG, high-speed video and a back-mounted accelerometer (Extended Data Fig. 63 

5).  64 

 65 

DAN signals correlate with self-timing. DAN GCaMP6f fluorescence typically exhibited brief 66 

transients following cue onset and immediately before movement onset, as observed in previous 67 

studies12-16 (Fig. 1c). However, during the timed interval, we observed slow “ramping up” of 68 

fluorescence, with a minimum after the cue-locked transient and maximum just before the lick-69 
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related transient. We asked whether this ramping differed between trials in which the animal 70 

moved relatively early or late. Strikingly, when we averaged signals by movement time, we 71 

observed systematic differences in the steepness of ramping that were highly predictive of 72 

movement timing (Fig. 1d,e). Trials with early first-licks exhibited steep ramping, whereas trials 73 

with later first-licks started from lower fluorescence levels and rose more slowly toward the time 74 

of movement. The fluorescence ramps terminated at nearly the same amplitude regardless of 75 

movement time. Similar ramping dynamics and baseline differences were found in the dorsal 76 

lateral striatal “lick area17” (DLS), in both the fluorescence of GCaMP6f in DAN axon terminals 77 

(Extended Data Fig. 4b), as well as GRABDA2m (DA2m) expressed in striatal cells (Fig. 1f, Extended 78 

Data Fig. 4c). DA2m is a new, improved extracellular dopamine indicator derived from the 79 

dopamine-2-receptor18. Thus, ramping SNc GCaMP6f dynamics are played out at the axon 80 

terminal and are reflected in striatal dopamine accumulation, suggesting that DAN ramping 81 

dynamics may causally influence movement timing via the interaction of released dopamine with 82 

downstream striatal neurons. Similar ramping dynamics were also observed in GCaMP6f-83 

expressing DAN cell bodies in the ventral tegmental area (VTA), reminiscent of ramping dynamics 84 

observed in VTA spiking and mesolimbic dopamine release during goal-oriented navigation tasks 85 

as animals approached a rewarded target19,20(Extended Data Fig. 4d).  86 

 87 

In addition to ramping dynamics, slowly-modulating DAN signals were correlated with first-lick 88 

timing even before cue-onset, with higher baseline fluorescence predicting earlier first-licks (Fig. 89 

1e,f; Extended Data Figs. 4a-d, 6a-b). Because dF/F correction methods can potentially distort 90 

baseline measurements, we rigorously tested and validated three different dF/F methods, and we 91 

also repeated analyses with raw fluorescence values compared between pairs of sequential trials 92 
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with different movement times (Extended Data Fig. 3, Supplementary Methods A). All reported 93 

results, including the systematic baseline differences, were robust to dF/F correction. The 94 

systematic correlation of baseline signals with first-lick timing was not fully explained by prior 95 

trial outcome (reward/no reward) nor licking during the intertrial interval (ITI) (Extended Data 96 

Fig. 6c). In fact, although a reward on the prior trial tended to elevate signals during the ITI, there 97 

was an abrupt “resetting” of baseline signals during the random delay (after lamp-off but before 98 

the start-timing cue), such that baseline amplitude became abruptly and progressively better 99 

explained by the upcoming trial outcome (reward/no reward) compared to the prior trial (Extended 100 

Data Fig. 6b,c). Mice trained on a variant of the self-timing task without lamp-off/on events 101 

showed no systematic differences in their timing distributions, suggesting that although DAN 102 

resetting occurred at lamp-off, the mice still referenced their timing to the start-timing cue 103 

(Extended Data Fig. 1c).  104 

 105 

Controlling for movement artifacts. The systematic ramping dynamics and baseline differences 106 

observed with GCaMP6f and DA2m were not observed in the tdt optical control channel nor in any 107 

of the other movement-control channels (Fig. 1e; Extended Data Figs. 4e,5b), making it unlikely 108 

that these ramping dynamics could have arisen from optical artifacts. Nevertheless, because DANs 109 

show transient responses to salient cues and movements12-16, it is possible GCaMP6f and DA2m 110 

fluorescence could reflect the superposition of dopaminergic responses to multiple task events, 111 

including the cue, lick, ongoing spurious body movements, and hidden cognitive processes like 112 

timing. For example, accelerating spurious movements could, in principle, produce motor-related 113 

neural activity that “ramps up” during the timed interval, perhaps even at different rates on 114 

different trials. We thus derived a nested linear encoding model of single-trial GCaMP6f signals, 115 
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a data-driven, statistical approach designed to isolate and quantify the contributions of task events 116 

(timing-independent predictors) from processes predictive of movement timing (timing-dependent 117 

predictors)21,22,23(Fig. 2a,b; Extended Data Fig. 7a-d). The model robustly detected task-event 118 

GCaMP6f kernels locked to cue, lick and EMG/accelerometer events (Fig. 2c; Extended Data Fig. 119 

7e), but these timing-independent predictors alone were insufficient to capture the rich variability 120 

of GCaMP6f signals for trials with different self-timed movement times, especially the timing-121 

dependent ramp-slope and baseline offset (68 sessions, Fig. 2c; Extended Data Fig. 7f,g). In 122 

contrast, two timing-dependent predictors robustly improved the model: 1) a baseline offset whose 123 

amplitude was linearly proportional to first-lick time; and 2) a “stretch” feature representing 124 

percentages of the interval following the cue, which predicted a ramp from cue-to-lick with slope 125 

inversely proportional to first-lick time (68 sessions, Fig. 2b,c; Extended Data Fig. 7e). Similar 126 

results were obtained for SNc DAN axon terminals in the DLS, DLS neurons expressing DA2m, 127 

and VTA DAN cell bodies (Extended Data Fig. 7h).  128 

 129 

In contrast to the GCaMP6f model, when the same procedure was applied to control photometry 130 

signals (tdt), the timing-independent predictors (which could potentially cause optical or 131 

mechanical artifacts—cue, first-lick, EMG/accelerometer) improved the model, but timing-132 

dependent predictors did not improve the model (Fig. 2c; Extended Data Fig. 7f-h).  133 

 134 

Principle component (PC) analysis revealed ramp-like and baseline-offset-like components that 135 

explained as much as 93% of the variance in GCaMP6f signals during the timing interval (mean: 136 

66%, range: 16-93%), but similar PCs were not present in tdt signals (mean: 4%, range: 1.6-15%) 137 

(Extended Data Fig. 8a,b). 138 
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 139 

DAN signals predict single-trial timing. Given that ramping and baseline-offset signals were not 140 

explained by nuisance movements or optical artifacts, we asked whether DAN GCaMP6f 141 

fluorescence could predict first-lick timing on single trials. Using a simple threshold-crossing 142 

model24, we found that the GCaMP6f signal was predictive of movement time even for low 143 

thresholds intersecting the “base” of the ramp, with the predictive value of the model progressively 144 

improving for higher thresholds (R2 low: 0.34; mid: 0.64; high: 0.94, Fig. 3a). To more thoroughly 145 

determine the independent, additional predictive power of DAN baseline and ramping signals over 146 

other task variables (e.g., movement time on previous trial; presence/absence of reward on 147 

previous trial, etc.), we derived a nested decoding model for first-lick time (Fig. 3a; Extended Data 148 

Fig. 8c). All predictors contributed to the predictive power of the model. However, even when we 149 

accounted for the contributions of prior trial history, tdt artifacts and baseline GCaMP6f signals, 150 

GCaMP6f threshold-crossing time robustly dominated the model, alone explaining 10% of the 151 

variance in first-lick time on average (range: 1-27%) (Fig. 3b-d). Alternate versions of the 152 

decoding model showed similar results (Extended Data Fig. 8c). 153 

 154 

SNc DANs causally influence self-timing. Because the DAN ramping signal robustly predicted 155 

first-lick timing and was apparently transmitted via dopamine release to downstream striatal 156 

neurons, ramping DAN activity may causally determine movement timing. If so, causally 157 

increasing the activity of DANs during timing should result in earlier self-timed movements, and 158 

vice-versa. We thus optogenetically activated or inhibited DANs (in separate experiments) on 30% 159 

of trials (Fig. 4a, Extended Data Fig. 9a,b). Activation significantly early-shifted the distribution 160 

of self-timed movements on stimulated trials compared to unstimulated trials (12 mice), whereas 161 
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inhibition produced significant late-shifting compared to unstimulated trials (4 mice).  Stimulation 162 

of mice expressing no opsin produced no consistent effect on timing (5 mice, Figure 4b-d; 163 

Extended Data Fig. 9c-e). The direction of these effects was consistent across all animals tested in 164 

each category. Whereas bilateral stimulation of SNc DAN cell bodies caused early-shifting, the 165 

effects were generally larger and more consistent when activating SNc DAN terminals in DLS (2 166 

mice, Extended Data Fig. 9c,d). Outside the context of the timing task, DAN activation did not 167 

elicit immediate licking, nor did inhibition prevent licking, suggesting optogenetic effects on 168 

timing did not result from direct triggering or suppression of movement14, but rather were 169 

expressed through a “higher-level” cognitive process related to self-timing of the movement 170 

(Extended Data Fig. 10). 171 

 172 

Discussion. Here, we found that both baseline and slowly ramping DAN signals predict the timing 173 

of self-initiated movements. Trial-by-trial differences in these signals were finely tuned to 174 

movement onset, whether these signals were recorded from SNc cell bodies, SNc terminals in the 175 

DLS, or VTA cell bodies. Moreover, slow DAN dynamics were reflected in dopamine release in 176 

DLS, demonstrating availability of this information to downstream striatal effectors positioned to 177 

influence when movement occurs. Consistent with the direction of these effects, optogenetic 178 

suppression and augmentation of DAN activity during the timing interval causally altered 179 

movement timing. Thus, DAN activity is poised to control the moment-to-moment decision of 180 

when to move.  181 

 182 

A number of studies have reported short-latency (≤ ~500 ms) increases in DAN activity in response 183 

to sensory cues and immediately preceding self-initiated movements12-16, similar to the sensory- 184 
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and motor-related transients we observed following the cue and preceding first-lick. However, the 185 

slow-timescale DAN signals we observed during self-timing were markedly different. First, the 186 

ramping signal unfolded over seconds, preceding the first-lick by as long as 10 s. Second, 187 

variations in baseline amplitude before the cue and the subsequent ramp-slope predicted the trial-188 

by-trial timing of the first-lick. To effectively model DAN signals on single trials, we had to 189 

incorporate two time-dependent features: a baseline offset and a “stretch” parameter that scaled 190 

DAN signals along the time axis (Fig. 2). Moreover, these features predicted movement time 191 

independent of recent trial history (Fig. 3). Combined with the optogenetic results, these findings 192 

suggest that variations in slow DAN dynamics affect trial-by-trial movement timing.  193 

 194 

These slow-timescale DAN signals could be unique to the timing requirement of our task. However, 195 

when we averaged DAN signals aligned to “spontaneous” licks during the ITI, we also observed 196 

slow ramping similar to that observed during the timing interval, with signal building over seconds 197 

from the offset of the previous lick up to the time of the next lick (Extended Data Fig. 6d). Thus, 198 

slowly evolving DAN signals may be integral to self-initiated movements more generally. It is 199 

possible that slow ramping dynamics predictive of movement timing would emerge in previous 200 

datasets if DAN signals were similarly averaged according to the interval between self-initiated 201 

movement bouts. 202 

 203 

Previous studies have reported slow ramping signals in the mesolimbic system in certain 204 

behavioral contexts, including goal-directed navigation19; multi-step tasks culminating in 205 

reward25,26; and passive observation of dynamic visual cues indicating proximity to reward20. It has 206 

been proposed that slowly ramping mesolimbic DAN signals could encode increasing value as 207 
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animals approach reward25,26 or alternatively could reflect moment-by-moment reward-prediction 208 

errors (RPE)20,27. The ramping signals we observed in the nigrostriatal system are consistent with 209 

either value or RPE interpretations. However, it has been unclear how the brain employs slowly 210 

ramping DAN signals in behavior. Our study moves beyond previous studies by finding that trial-211 

by-trial variability in ramping dynamics explains the precise timing of a behavioral output—the 212 

self-timed lick—and that optogenetically manipulating SNc DAN activity causally alters the 213 

timing of that output. Thus, SNc ramping may not merely encode progress toward a goal, but could 214 

also play a causal role in the timing of movement initiation. This interpretation could be related to 215 

classic findings from Parkinson’s disease, in which loss of nigrostriatal pathway DANs results in 216 

difficulty initiating movements28,29.  217 

 218 

Lesion and pharmacological studies have long suggested roles for the SNc and dopamine in 219 

timing4,5. Broadly speaking, conditions that increase dopamine availability, such as amphetamine 220 

administration, affect timing as if speeding an internal “pacemaker10,11,30,” whereas conditions that 221 

decrease dopamine availability/efficacy generally have the opposite effect4,8. Our results—in both 222 

recordings and optogenetic manipulations of DANs—are consistent with this view. Moreover, the 223 

ramping signals and the anti-correlation of ramping slope with movement time bear striking 224 

resemblance to Pacemaker-Accumulator models of neural timing5,9, a longstanding conceptual 225 

framework that captures canonical features of timing behavior. 226 

 227 

Soares et al. recently reported findings complicating the standard view of dopamine in timing1. In 228 

mice performing a temporal bisection task, RPE-like transients in SNc DAN GCaMP6f signals 229 

were observed immediately after the stop-timing cue. These transients were smaller when animals 230 
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overestimated the timed interval, which was interpreted as evidence that lower DAN activity 231 

reflects a faster pacemaker, the opposite of our findings and most prior work30. This finding may 232 

be unique to the temporal bisection task, which has aspects of categorization as well as timing and 233 

thus is more complex than tasks that only rely on movement to produce timed intervals (as in our 234 

task).  235 

 236 

However, a recently-proposed temporal difference learning framework for explaining dynamic 237 

DAN activity could provide a unified explanation for these findings20,27,30(see Supplementary 238 

Discussion for details). The model assumes that DAN activity provides a continuous readout of 239 

RPE, which under conditions of state uncertainty (as in timing) is shown to reflect the moment-to-240 

moment derivative of the value landscape27. In this framework, variation in interval timing arises 241 

from differences in the rate of traversing the internal model of the value landscape compared to 242 

veridical time, which can be modeled as stretching/compression of the subjective value function30. 243 

Critically, the amount of compression is taken to be controlled by a pacemaker whose speed is 244 

proportional to the tonic level of dopamine from trial-to-trial30. In both the self-timed movement 245 

and bisection tasks, we observed higher baseline DAN signals associated with relatively fast 246 

timekeeping, consistent with relatively high tonic DAN activity reflecting fast pacemaking in both 247 

tasks. Additionally, temporally-discounted value should increase as the time of reward approaches 248 

in both tasks, and the model predicts faster pacemaking on a given trial would compress this 249 

function. During the self-timed movement task, compression would cause faster increases in value 250 

and thus steeper ramping of the DAN signal, as we observed. In the bisection task, compression 251 

of the value function would produce higher estimated value just before the stop-cue, and thus a 252 

smaller change in value (RPE) following the stop-cue, resulting in a blunted DAN transient. Soares 253 
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et al. indeed observed smaller stop-cue-related transients when animals overestimated the timed 254 

interval—consistent with compression of the subjective value function during fast pacemaking.  255 

 256 

Altogether, we argue that relatively high DAN activity reflects faster pacemaking across timing 257 

tasks, with the specific timing from trial-to-trial influenced by the dynamics of DAN signaling.  258 

 259 
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 344 
 345 

Figure 1 | SNc DAN signals preceding self-timed movement. a, Self-timed movement task. b, 346 
First-lick distribution for two task variants performed by the same mouse. Red: 3.3 s-reward 347 
boundary (4 sessions); Blue: 5 s-reward boundary (4 sessions). For all mice, see Extended Data 348 
Fig. 1. c, Left: surgical strategy for GCaMP6f/tdTomato fiber photometry. Right: average SNc 349 
DAN GCaMP6f response for first-licks between 3-3.25 s (12 mice). Left of plot: cue-aligned 350 
average; right of plot: first-lick-aligned average. Vertical dashed line: first-lick time. Break in axis 351 
indicates change in plot alignment. d, Average SNc DAN GCaMP6f responses for different first-352 
lick times (12 mice). e, Comparison of average DAN GCaMP6f and tdTomato responses (12 mice). 353 
Traces plotted up to 150 ms before first-lick. f, Average DLS DA2m signals (4 mice). 354 
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 355 
 356 
 357 
Figure 2 | Contribution of optical artifacts, task variables and ongoing movements to SNc 358 
GCaMP6f signals. a, Nested encoding model comparing the contribution of timing-independent 359 
predictors (TI) to the contribution of timing-dependent predictors (TD). b, Predicted dF/F signal 360 
for one session plotted up to time of first lick. Model error simulated 300x (shading). c, Nested 361 
encoding model for 1 session showing the recorded signal (left panel), the timing-independent 362 
model (middle panel), and the full, timing-dependent model with all predictors (right panel). Top: 363 
GCaMP6f; Bottom: tdTomato (tdt).  364 
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 382 
 383 
 384 
Figure 3 | Single-trial baseline and ramping DAN signals predict first-lick timing. a, Nested 385 
decoding model. Top-left: schematic. Bottom-left: single-trial cue-aligned SNc DAN GCaMP6f 386 
signals from one session (6 trials shown for clarity). Traces plotted up to first-lick. Right: threshold 387 
crossing model. Low/Mid/High: threshold amplitude. Grey dots: single trials. b, Model weights, 388 
94 sessions. Error bars: 95% CI, *: p<0.05. Numbers indicate nesting-order. c, Variance explained 389 
by each model nest. Grey lines: single sessions; thick black line: average. For model selection, see 390 
Extended Data Fig. 8c. d, Predicted vs. actual first-lick time, same session as a. 391 
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 409 
 410 

Figure 4 | Optogenetic DAN manipulation systematically and bidirectionally shifts the timing 411 
of self-timed movements. a, Strategy for optogenetic DAN activation or inhibition. Mice were 412 
stimulated from cue-onset until first-lick or 7 s. b, Empirical continuous probability distribution 413 
functions (cdf) of first-lick times for stimulated (blue line) versus unstimulated (grey line) trials. 414 
Arrow and shading show direction of effect. P-values calculated by Kolmogorov-Smirnov test (for 415 
other metrics, see Extended Data Fig. 9b-e). c, Mean bootstrapped difference in first-lick time, 416 
stimulated-minus-unstimulated trials. Dots: single sessions. d, Comparison of mean first-lick time 417 
difference across all sessions. Error bars: 95% confidence interval (*: p < 0.05). 418 
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Methods 419 

Animals. Adult male and female hemizygous DAT-cre mice31 (B6.SJL-Slc6a3tm1.1(cre)Bkmm/J; The 420 

Jackson Laboratory) or wt C57/b6 mice were used in all experiments. Mice were housed on a 421 

reversed night/day cycle (12h dark/12h light) and behavioral sessions occurred during the dark 422 

cycle. All experiments and protocols were approved by the Harvard Institutional Animal Care and 423 

Use Committee and were conducted in accordance with the National Institutes of Health Guide for 424 

the Care and Use of Laboratory Animals. 425 

 426 

Surgery. Surgeries were conducted under aseptic conditions. Mice were anesthetized with 427 

isoflurane (0.5-2% at 0.8L/min). Analgesia was provided by s.c. 5mg/kg ketoprofen injection 428 

during surgery and once daily for 3d postoperatively. Virus was injected (50nL/min) and the pipet 429 

remained in place for 10min before removal. 200µm, 0.53NA blunt fiber optic cannulae (Doric) 430 

or tapered fiber optic cannulae (200µm, 0.60NA, 2mm tapered shank, OptogeniX) were positioned 431 

at SNc, VTA or DLS and secured to the skull with dental cement (Metabond). Neck EMG 432 

electrodes were constructed from two 32G pacemaker wires attached to a custom socket mounted 433 

in the dental cement. Sub-occipital neck muscles were exposed by blunt dissection and electrode 434 

tips embedded bilaterally.  435 

 436 

Stereotaxic coordinates (from bregma and brain surface). 437 

Virus:  438 

SNc: 3.16mm posterior, +/- 1.4mm lateral, 4.2mm ventral 439 

VTA: 3.1mm posterior, +/-0.6mm lateral, 4.2mm ventral  440 

DLS: 0mm anterior, +/- 2.6mm lateral, 2.5mm ventral. 441 
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Fiber Optic Tips: 442 

SNc/VTA: 4.0mm ventral (photometry) or 3.9mm ventral (optogenetics). 443 

DLS: 2.311mm ventral (blunt fiber) or 4.0mm ventral (tapered fiber) 444 

 445 

Virus. 446 

Photometry: 447 

tdTomato (“tdt”): AAV1-CAG-FLEX-tdT (UNC Vector Core), 100nL used alone or in 448 

mixture with other fluorophores (below), working concentration 5.3*1012gc/mL 449 

gCaMP6f (at SNc or VTA): 100nL AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 450 

(2.5*1013gc/mL, Penn Vector Core). Virus was mixed in a 1:3 ratio with tdt (200nL 451 

total).  452 

DA2m (at DLS): 200-300nL AAV9-hSyn-DA4.4(DA2m) (working concentration: ca. 453 

3*1012gc/mL, Vigene) + 100nL tdt 454 

Optogenetics (all bilateral at SNc): 455 

ChR2: 1000nL AAV5-EF1a-DIO-hChR2(H134R)-EYFP-WPRE-pA (3.2*1013gc/mL, 456 

UNC Vector Core)  457 

ChrimsonR: 700nL AAV1-hSyn-FLEX-ChrimsonR-tdT (4.1*1012gc/mL, UNC Vector 458 

Core) 459 

stGtACR2: 300nL 1:10 AAV2/8-hSyn1-SIO-stGtACR2-FusionRed (working 460 

concentration 4.7*1011gc/mL, Addgene/Janelia Viral Core) 461 

 462 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2020. . https://doi.org/10.1101/2020.05.13.094904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.094904


 22 

Water-deprivation and acclimation. Animals recovered 1wk postoperatively before water 463 

deprivation. Mice received daily water supplementation to maintain ≥80% initial body weight and 464 

fed ad libitum. Training commenced when mice reached the target weight (~8-9d post-surgery). 465 

 466 

Histology. Mice were anesthetized with >400mg/kg pentobarbital (Somnasol) and perfused with 467 

10mL 0.9% sodium chloride followed by 50mL ice-cold 4% paraformaldehyde in 0.1M phosphate 468 

buffer. Brains were fixed in 4% paraformaldehyde at 4°C for >24hr before being transferred to 30% 469 

sucrose in 0.1M phosphate buffer for >48hr. Brains were sliced in 50µm coronal sections by 470 

freezing microtome, and fluorophore expression was assessed by light microscopy. The sites of 471 

viral injections and fiber optic placement were mapped with an Allen Mouse Brain Atlas. 472 

 473 

Behavioral rig, data acquisition and analysis. A custom rig provided cues, recorded events and 474 

delivered juice rewards under the control of a Teensy 3.2 microprocessor running a custom 475 

Arduino state-system behavioral program with MATLAB serial interface. Digital and analog 476 

signals were acquired with a CED Power 1400 data acquisition system/Spike2 software 477 

(Cambridge Electronic Devices). Photometry and behavioral events were acquired at 1000Hz; 478 

movement channels were acquired at 2000Hz. Video was acquired with FlyCap2 or Spinnaker at 479 

30fps (FLIR). Data were analyzed with custom MATLAB statistics packages.  480 

 481 

Self-timed movement task. Mice were head-fixed with a juice tube positioned in front of the 482 

tongue. During periods when rewards were not available, a houselamp was illuminated. At trial 483 

start, the houselamp turned off, and a random delay ensued (0.4-1.5s) before a cue (simultaneous 484 

LED flash and 3300Hz tone, 100ms) indicated start of the timing interval. The timing interval was 485 
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divided into two windows, early (0-3.333s in most experiments; 0-4.95s in others) and reward 486 

(3.333-7 s; 4.95-10s), followed by the intertrial interval (ITI, 7-17 s; 10-20s). The window in which 487 

the mouse first licked determined the trial outcome (early, reward, or no-lick). An early first-lick 488 

caused an error tone (440Hz, 200ms) and houselamp illumination, and the mouse had to wait until 489 

the full timing interval had elapsed before beginning the ITI. A first-lick during the reward window 490 

caused a reward tone (5050Hz, 200ms) and juice delivery, and the houselamp remained off until 491 

the end of the trial interval. If the timing interval elapsed with no lick, a time-out error tone played 492 

(131Hz, 2s), the houselamp turned on, and ITI commenced. During the ITI and pre-cue delay, 493 

there was no penalty for licking.  494 

 495 

Mice learned the task in 3 stages (Extended Data Fig. 1a). On the first 1-4 days of training, mice 496 

learned a beginner-level task, which was modified in two ways: 1. To encourage participation, if 497 

mice did not lick before 5s post-cue, they received a juice reward at 5s,  2. Mice were not penalized 498 

for licking in reaction to the cue (within 500ms). When the mouse began self-triggering ≥50% of 499 

rewards (day 2-6 of training), the mouse advanced to the intermediate-level task, in which the 500 

training reward at 5s was omitted, and the mouse had to self-trigger all rewards. After 501 

completing >250 trials/day on the intermediate task, mice advanced to the mature task (no reaction 502 

licks permitted, day 4-7 of training). All animals learned the mature task and worked for ~400-503 

1500 trials/session. 504 

 505 

Online movement monitoring. Movements were recorded simultaneously during behavior with 506 

four movement-control measurements: neck EMG (band-pass filtered 50-2000Hz, 60Hz notch, 507 

amplified 100-1000x), back-mounted accelerometer (SparkFun), high-speed camera (30Hz, FLIR), 508 
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and tdt photometry. All control signals contained similar information, and thus only a subset of 509 

controls was used in some sessions. 510 

 511 

Photometry. Fiber optics were illuminated with 475nm blue LED light (Plexon) (SNc/VTA: 512 

50μW, DLS: 35μW) measured at patch cable tip with a light-power meter (Thor Labs). Green 513 

fluorescence was collected via a custom dichroic mirror (Doric) and detected with a Newport 1401 514 

Photodiode. Fluorescence was allowed to recover ≥1d between recording sessions. To avoid 515 

crosstalk in animals with tdt expression, tdt was recorded at one of the 3 sites (SNc, VTA, or DLS, 516 

550 lime LED, Plexon) while GCaMP6f or DA2m was recorded simultaneously only at the other 517 

implanted sites. 518 

 519 

dF/F. Raw fluorescence for each session was pre-processed by removing rare singularities (single 520 

points >15 STD from the mean) by interpolation to obtain F(t). To correct photometry signals for 521 

bleaching, dF/F was calculated as: 522 

 523 

 524 

 525 

where F0(t) is the 200 s moving average of F(t). We tested several other complementary methods 526 

for calculating dF/F and all reported results were robust to dF/F method (Supplementary Methods 527 

A). To ensure dF/F signal processing did not introduce artifactual scaling or baseline shifts, we 528 

also tested several complementary techniques to isolate undistorted F(t) signals where possible 529 

and quantified the amount of signal distortion when perfect isolation was not possible 530 

(Supplementary Methods A and Extended Data Fig. 3c.).  531 
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 532 

Baseline DAN signal encoding models. To determine whether baseline DAN signals were best 533 

explained by the prior trial outcome (n-1th), current trial outcome (nth), or some interaction between 534 

the two, we employed two “paired-trial” strategies, one using raw F(t) (to check for robustness to 535 

dF/F scaling artifacts, Supplementary Methods A) and the other using dF/F signals. Mean baseline 536 

activity was measured in sliding windows (100ms divisions, 2s windows) from the n-1th trial ITI-537 

start to the nth trial cue-onset. We abbreviate trial outcomes as E=“early” (first-lick between 0.7-538 

3.333s, unrewarded) and R=“rewarded” (first-lick at 3.334-7s, rewarded), with the position of the 539 

letters indicating the order of consecutive trials (e.g., “ER” or “RE”).  540 

 541 

Baseline differences between all paired, consecutive trials (EE, ER, RE, RR) were compared for 542 

dF/F signals, controlling for the prior trial outcome by 4-factor ANOVA (factor 1: previous trial 543 

outcome (E or R, 1 degree of freedom (df)); factor 2: subsequent trial outcome (E or R, 1 df); 544 

factor 3: presence of licks in window (df: 1); factor 4: session ID (df: 112), comparison: baseline 545 

dF/F activity within 2s sliding windows, Extended Data Fig. 6c, top). Relative influence on 546 

baseline dF/F by the n-1th and nth trial outcome was estimated as the relative size of the 4-way 547 

ANOVA F-statistic as a function of time (Extended Data Fig. 6c, bottom). Similar results were 548 

obtained on single sessions by 2-factor and 3-factor ANOVA. Similar results were also obtained 549 

comparing triplets of consecutive trials (EER, RRE, EEE, RRR). Both trial 2 and trial 3 in the 550 

triplet were preceded by a trial of the same outcome type, and thus we could compare baseline raw 551 

F(t) signals with minimal bleaching distortion. 552 

 553 
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DAN signal encoding model. To test the independent contribution of each task-related input to 554 

the photometry signal and select the best model, we employed a nested fitting approach, in which 555 

each dataset was fit multiple times (in “nests”), with models becoming progressively more 556 

complex in subsequent nests. The nests fit to the GCaMP6f photometry data employed the inputs 557 

X(j) at each jth nest: 558 

Null Model: X(0) = x0 559 

Nest 1:  X(1) = X(0) + tdt 560 

Nest 2:  X(2) = X(1) + cue + first-lick 561 

Nest 3:  X(3) = X(2) + EMG/accelerometer 562 

Nest 4:  X(4) = X(3) + time-dependent baseline offset 563 

Nest 5:  X(5) = X(4) + stretch representing percentages of interval 564 

Overfitting was penalized by ridge regression, and the optimal regularization parameter for each 565 

nest was obtained by 5-fold cross-validation to derive the final model fit for each session. Model 566 

improvement by each input was assessed by the percentage loss improvement at the nest where 567 

the input first appeared compared to the prior nest. The loss improvement of Nest 1 was compared 568 

to the Null Model (the average of the photometry timeseries). The nested model of tdt control 569 

photometry signals was the same, except Nest 1 was omitted.  570 

 571 

The GLM for each nest takes the form: 572 

Y = ϴX(j) 573 

Where Y is the 1xn vector of the photometry signal across an entire behavioral session (n is the 574 

total number of sampled timepoints); X(j) is the dxn design matrix for nest j, where the rows 575 
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correspond to the dj predictors for nest j and the columns correspond to each of the n sampled 576 

timepoints of Y; and ϴ is the dx1 vector of fit weights.  577 

 578 

Y is the concatenated photometry timeseries taken from trial start (lights off) to the time of first 579 

lick. Because of day-to-day/mouse-to-mouse variation (ascribable to many possible sources, e.g., 580 

different neural subpopulations, expression levels, behavioral states, etc.), each session was fit 581 

separately. 582 

 583 

The dj design matrix predictors were each scaled (maximum amplitude 1) and grouped by input to 584 

the model. The timing-independent inputs were: 1. Null offset (x0, 1 predictor), 2. tdt (1 predictor), 585 

3. cue (24 predictors), 4. first-lick (28 predictors), and 5. EMG/accelerometer (44 predictors). The 586 

timing-dependent inputs were: 6. timing-dependent baseline offset (1 predictor), 7. stretch (500 587 

predictors).  588 

 589 

To reduce the number of predictors, cue, first-lick and EMG/accelerometer predictors were 590 

composed from sets of basis kernels as described previously22,23(Extended Data Fig. 7c). The cue 591 

basis kernels were spaced 0-500 ms post-cue and first-lick basis kernels were spaced -500ms-0ms 592 

relative to first-lick, the typically-observed windows of stereotypical sensory and motor-related 593 

neural responses. For nuisance movements (EMG/accelerometer), events were first discretized by 594 

thresholding (Extended Data Fig. 7b) and then convolved with basis kernels spanning -500 to 500 595 

ms around the event. This window was consistent with the mean movement-aligned optical artifact 596 

observed in the tdt channel. The timing-dependent baseline offset was encoded as a constant offset 597 

spanning from lamp-off until first-lick, with amplitude taken as linearly proportional to the timed 598 
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interval on the current trial. The timing-dependent stretch input was composed of 500 predictors, 599 

with each predictor containing 1’s tiling 0.05% of the cue-to-lick interval, and 0’s otherwise 600 

(Extended Data Fig. 7d). Importantly, the stretch was not constrained in any way to form ramps. 601 

 602 

Basis sets were optimized to minimize Training Loss, as calculated by mean squared error of the 603 

unregularized model: 604 

argminX
(j)(Training Loss(ϴ) = 1/n sum(Y – ϴX(j))2) 605 

 606 

Superfluous basis set elements that did not improve Training Loss compared to the Null Model 607 

were not included in the final model. Goodness of the training fit was assessed by Akaiki 608 

Information Criterion (AIC), Bayesian Information Criterion (BIC), R2, and Training Loss. The 609 

optimal, regularized model for each nest/session was selected by 5-fold cross-validation in which 610 

the regularization parameter, λj, was optimized for minimal average Test Loss: 611 

   argminλj (Test Loss(ϴ,λj) = 1/n sum(Y – ϴX(j))2  + λj|ϴ|2) 612 

 613 

Test Loss for each optimal model was compared across nests to select the best model for each 614 

session. Models were refit with the optimal λj to obtain the final fit. 615 

 616 

Model error was simulated 1000 times by redrawing ϴ coefficients consistent with the data 617 

following the method described by Gelman and Hill32, and standard errors were propagated across 618 

sessions. The absolute value of each predictor was summed and divided by the total number of 619 

predictors for that input to show the contribution of the input to the model (Extended Data Fig. 620 

7g). To simulate the modeled session’s photometry signal for each nest j, Yfit was calculated as 621 
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ϴX(j) and binned by the time of first lick relative to the cue. The error in the simulation was shown 622 

by calculating Yfitsim = ϴsimX(j) for 300 simulated sets of ϴsim. 623 

 624 

Principle component analysis (PCA) 625 

Unsmoothed ramping intervals for GCaMP6f photometry timeseries were fit with PCA and 626 

reconstructed with the first three principle components (PCs). To derive a PCA fit matrix with 627 

ramping intervals of the same number of samples, the length of each trial was scaled up by 628 

interpolation to the maximum ramping interval duration: 629 

7s–0.7s cue buffer–0.6s first-lick buffer=5.7s: 5700 sample ramping interval 630 

Following PC-fitting, datasets were down-sampled to produce a fit of the correct time duration. 631 

Trials where the ramping interval was <0.1s were excluded to exclude noise from down-sampling.   632 

 633 

First-lick time decoding model 634 

A nested, generalized linear model was derived to predict the first-lick time on each trial in a 635 

session and quantify the contribution of previous reward history and photometry signals to the 636 

prediction. The model was of the form: 637 

log(y) = bx 638 

where b is a vector of fit coefficients and x is a vector of predictors. The nested model was 639 

constructed such that predictors occurring further back in time (such as reward history) and 640 

confounding variables (such as tdt photometry signals) were added first to determine the additional 641 

variance explained by predictors occurring closer to the time of first-lick, which might otherwise 642 

obscure the impact of these other variables. The predictors, in order of nesting, were: 643 

Nest 0:  b0 (Null model, average log-first-lick time) 644 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2020. . https://doi.org/10.1101/2020.05.13.094904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.094904


 30 

Nest 1:  b1 = b0 + first-lick time on previous trial 645 

  Nest 2-5:  b2 = b1 + previous trial outcome (1,0)* 646 

  Nest 6:  b3 = b2 + median photometry signal in 10s window before lamp-off 647 

  Nest 7:  b4 = b3 + median photometry signal from lamp-off to cue 648 

  Nest 9:  b5 = b4 + tdt threshold crossing time** 649 

Nest 10:  b6 = b5 + GCaMP6f threshold crossing time** 650 

 651 

where all predictors were normalized to be in the interval (0,1). 652 

 653 

* Outcomes included (in order of nest): Reaction (first-lick before 0.5s), Early (0.5-3.333s), 654 

Reward (3.333-7s), ITI (7s-17s). No-lick was implied by all four outcomes encoded as zeros.  655 

** Details on threshold-crossing time and alternative models included in Supplementary Methods 656 

B. 657 

 658 

To exclude the sensory- and motor-related transients locked to the cue and the first-lick events in 659 

the threshold-crossing nests, the ramping interval was conservatively defined as 0.7s post-cue up 660 

until 0.6s before first-lick, and the minimum ramping interval for fitting was 0.1s. Thus, for a trial 661 

to be included in the model, the first lick occurred between 1.4s to 17s (end of trial).   662 

 663 

Initial model goodness of fit was assessed by R2, mean-squared loss and BIC. Models were 5-fold 664 

cross-validated with ridge regression at each nest to derive the final models, as described above. 665 

95% confidence intervals on model coefficients were calculated by 2-sided t-test with standard 666 

errors propagated across sessions. 667 
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 668 

Optogenetics—naïve/expert control sessions. To determine whether optogenetic stimulation 669 

directly elicited or prevented licking, licking behavior was first tested outside the context of the 670 

self-timed movement task on separate sessions in the same head-fixed arena but with no cues or 671 

behavioral task. Opsin-expressing mice were tested before any exposure to the self-timed 672 

movement task (“Naïve”) as well as after the last day of behavioral recording (“Expert”). In ChR2 673 

control sessions, stimulation (5mW 425nm light, 3s duration, 10Hz, 20% duty cycle) was applied 674 

randomly at the same pace as in the self-timed movement task. stGtACR2 control sessions were 675 

conducted similarly (12mW 425mW light, 3s duration, constant illumination); but to examine if 676 

inhibition could block ongoing licking, we increased the baseline lick-rate by delivering juice 677 

rewards randomly (5% probability checked once every 5s).  678 

 679 

Optogenetics—self-timed movement task. SNc DANs were optogenetically manipulated in the 680 

context of the 3.3s self-timed movement task. To avoid over-stimulation, light levels were adjusted 681 

to be subthreshold for eliciting overt movements14, and mice were not stimulated on consecutive 682 

days.  683 

 684 

Activation: SNc cell bodies were illuminated bilaterally (ChR2: 0.5-5mW 425nm blue LED light; 685 

ChrimsonR 550nm lime or 660nm crimson) on 30% of trials (10Hz, 20ms up-time starting at 686 

cue onset and terminating at first-lick). DAN terminals in DLS were stimulated bilaterally via 687 

tapered fiber optics on separate sessions. 688 

Inactivation: SNc cell bodies were illuminated bilaterally (stGtACR2: 12 mW 425 nm blue light) 689 

on 30% of trials (constant illumination starting at cue onset and terminating at first lick).  690 
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 691 

Quantification of optogenetic effects. The difference in the distribution of trial outcomes between 692 

stimulated and unstimulated trials on each session was quantified in four ways. 693 

1. 2-Sample Unsigned Kolmogorov-Smirnov Test.  694 

2. Difference in empirical continuous probability distribution function (cdf). The difference 695 

in the integral of the stimulated and unstimulated cdf (dAUC) was calculated for each 696 

session from 0.7-7s. Effect size was quantified by permutation test, wherein the identity of 697 

each trial (stimulated or unstimulated) was shuffled, and the distribution of dAUCs for the 698 

permuted cdfs was calculated 10,000x. Results were reported for all sessions. 699 

3. Difference in mean movement time. Movement times on stimulated and unstimulated trials 700 

were pooled and the distribution of movement time differences was determined by non-701 

parametric bootstrap, in which a random stimulated and unstimulated trial were drawn from 702 

their respective pools 1,000,000x and the difference taken. The mean of each session’s 703 

bootstrapped distribution was compared across sessions by the 1,000,000x bootstrapped 704 

difference of the mean between sessions of different categories. 705 

4. Difference in median movement time. Same as above but with median. 706 

 707 

Code availability  708 

All custom behavioral software and analysis tools are available 709 

at https://github.com/harvardschoolofmouse. 710 

 711 

Data availability  712 
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The data that support the findings of this study are available from the corresponding author upon 713 

reasonable request. 714 
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Extended Data 756 

 757 
Extended Data Figure 1 | Self-timed movement task learning and variations. a, Task learning. 758 
Histogram of first-licks from single sessions at different stages of training. Bar color indicates first 759 
lick category (red: reaction, grey: early, blue: operant-rewarded, gold: Pavlovian-rewarded). 760 
Diagonal slash across bar top indicates bar height truncated for clarity. b, First-lick distributions 761 
from tasks with different target timing intervals (16 mice, 152 sessions). Red: 3.3 s reward-762 
boundary. Blue: 5 s reward-boundary. Mice adjust behavior to the timing-contingencies of the 763 
task. c, First-lick distributions during behavior with and without houselamp cues. Red: standard 764 
3.3 s task; Black: 3.3 s task omitting houselamp cues (4 mice, 4-5 sessions/mouse on each version 765 
of the task). Mice time their first-licks relative to the start cue, not the houselamp. 766 
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 767 
 768 

Extended Data Figure 2 | Fiber optic placement and histology. a, Approximate fiber positions, 769 
all mice. b, Brightfield microscopy with polarized filter on a freshly-cut brain slice showing 770 
bilateral fiber placement at SNc (stGtACR2). c, Example of co-expression of green and red 771 
fluorophores relative to fiber optic tip (Left: DA2m, Right: tdTomato). 772 
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 773 
Extended Data Figure 3 | dF/F method validation. a, Minimal bleaching occurs over a 3-trial 774 
window. Left: slow, raw fluorescence bleaching across one session. Left inset: Comparison to 775 
bleaching across the first 3 trials (~1 min). Right: dF/F removes bleaching dynamics. Right inset: 776 
the same 3-trial window shown for dF/F-treated signal. b, Average raw fluorescence on paired, 777 
consecutive trials from one session aligned to cue on the nth trial. Left: n-1th trial was early, nth trial 778 
was rewarded (“ER” condition). Right: “RE” condition (See Supplementary Methods A). c. 779 
Comparison of baseline GCaMP6f signals on paired, consecutive trials aligned to cue. Columns: 780 
three different versions of the signal (Raw fluorescence, Normalized baseline dF/F method, 781 
Moving average dF/F method. Top row: ER condition; middle row: RE condition; bottom row: 782 
distortion index. Red distortion index plot shows only Normalized baseline method. Green 783 
distortion index plot shows overlay of Moving Average, Low-Pass Filter, and Multiple Baseline 784 
dF/F Methods because the difference in signal distortion between these methods was 785 
indistinguishable (See Supplementary Methods A). 786 
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 787 
Extended Data Figure 4 | Cue-aligned average photometry signals showing reward-related 788 
responses: all mice, all fluorophores. a, DAN GCaMP6f signals at SNc cell bodies (12 mice). b, 789 
DAN GCaMP6f signals at axon terminals in DLS. The sharp, downward deflection immediately 790 
prior to movement onset was observed in every mouse (12/12) on every session and was not 791 
explained by movement artifacts. There appears to be a rapid “off” response. c, Striatal DA2m 792 
signals at DLS (4 mice). d, DAN GCaMP6f signals at VTA cell bodies (4 mice). e, tdTomato 793 
signals (all sites, all sessions). Insets: Average signals for first-licks occurring between 3-3.25, 794 
aligned to cue (left of axis break) and aligned to first-lick (right of axis break). Traces plotted up 795 
till approximate movement onset (150 ms before first-lick). 796 
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 797 
Extended Data Figure 5 | Movement controls reliably detect movements, but there is no 798 
systematic difference in movement before first-lick during the timing interval. a, Schematic 799 
of movement controls. b, First-lick-aligned average movement signals on rewarded (red) and 800 
unrewarded (blue) trials. Pre-lick traces are truncated at the nearest cue-time for the averaged 801 
traces (dashed red, dashed blue). Left: one session; Right: all sessions. Dashed grey line: time of 802 
earliest-detected movement on most sessions (150 ms before first-lick). Average first-lick-locked 803 
tdt optical artifacts showed inconsistent directions even within the same session. Averages for all 804 
three types of artifact (consistently up, “Up”; consistently down, “Down”; and not consistent “NC”) 805 
shown for all sessions. c, Breakdown of average tdt artifact direction by session at each recording 806 
site. 807 
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 808 
Extended Data Figure 6 | Baseline SNc DAN signals predict trial outcome, even when 809 
controlling for prior trial outcome and ongoing movement. Paired, consecutive trials were 810 
pooled into 4 categories based on the n-1th and nth trial outcomes (4 mice, the 17 sessions with 811 
highest signal to noise and number of trials). Categories: Early-Early (EE, where n-1th outcome is 812 
early, nth outcome is early: 2254 trials), Early-Reward (ER: 730 trials), Reward-Early (RE: 190 813 
trials) and Reward-Reward (RR: 174 trials). To control for the contribution of movement to 814 
baseline signals, plots are shown only for trials with no licking during the last 5 seconds of the ITI 815 
before Lamp-off. a, Cue-aligned average DAN signals become more predictive of nth trial outcome 816 
as the cue time approaches. b, Lamp-off-aligned average DAN signals show “resetting” effect 817 
after the houselamp turns off. Before lamp-off, average DAN signals reflect the n-1th trial outcome; 818 
subsequently they reflect the nth trial outcome. c, Selectivity index taken on single trials quantifies 819 
the relative contribution of n-1th and nth trial outcomes to the prediction of the baseline signal. 820 
(Index calculated to exclude timepoints after the nth trial first-lick). d, Average ITI GCaMP6f 821 
signals aligned to most recent previous lick-time plotted up to onset of next spontaneous self-822 
initiated lick during the ITI. (1 mouse, 5 sessions, truncated 150 ms before lick detection).  823 
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 824 
Extended Data Figure 7 | DAN GCaMP6f signal encoding model parameterization and 825 
model selection. a, Schematic of photometry timeseries fit by encoding model. The lamp-off to 826 
first-lick interval was isolated from each trial in a session (top) and concatenated to produce the 827 
timeseries fit by the model (bottom). b, Derivation of EMG spikes from raw signals. Thresholding 828 
of rectified EMG at 3 standard deviations (std) during an example trial. c, Optimized basis kernels 829 
for cue, first-lick, and EMG/accelerometer spikes to produce timing-independent features. d, 830 
Schematic of d x n Design Matrix for timing-dependent features. Note: timing-independent 831 
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features not shown for clarity in schematic. e, GCaMP6f model fits by nest for example session. 832 
Model error simulated 300x (shading). f, Model loss by nest. Green: mean loss for SNc GCaMP6f; 833 
red: mean loss for tdTomato (tdt); grey lines: individual sessions; grey shading: timing-dependent 834 
nests. Left: full-scale view of all datasets. Right: mean GCaMP6f and tdt loss compared on same 835 
scale. g, Summary of feature weights across SNc GCaMP6f (left) and tdt (right) models (68 836 
sessions each). Coefficient weights were rectified, summed, and divided by the number of 837 
predictors per feature. Error bars: 2*standard error (too small to see). All features were significant 838 
in both GCaMP6f and tdt models. h, Top: examples of the full timing-dependent model (nest 5) 839 
from additional mice for all recording conditions. Bottom: tdt control channel fit. Model errors 840 
simulated 300x. Some mice show downward-going movement-related spikes at SNc cell bodies 841 
(second panel). All mice showed downward-going movement-related spikes from SNc terminals 842 
in DLS (middle panel). 843 
 844 
 845 
 846 
 847 
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 848 
 849 
Extended Data Figure 8 | Variations of the first-lick time decoding model. a, Principle 850 
component analysis (PCA) of the ramping interval (0.7 s up to first-lick relative to cue). Green: 851 
mean GCaMP6f recorded at SNc; Red: mean tdTomato (tdt) recorded at SNc and VTA; Grey lines: 852 
single-session data. Left: Variance explained by first 10 principle components (PC). Right: Scores 853 
of first three principle components. X-axis shown for longest-possible interpolated trial duration; 854 
trials of shorter duration were interpolated to have the same number of samples for PCA. b, 855 
Example session data simulated with first 3 PCs. Light traces: actual averaged GCaMP6f activity 856 
truncated at first-lick onset; Dark traces: PC fits of the same trials. c, Decoding model variations. 857 
*: p<0.05, error bars: 95% confidence intervals. GCaMP6f threshold crossing time dominated 858 
every version of the model; n-1th trial first-lick time was consistently the second-best predictor. 859 
 860 
 861 
 862 
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 863 
Extended Data Fig. 9 | Variations on measurements of optogenetic effects. a, Strategy for 864 
optogenetic targeting of DANs. b, Comparison of four complementary metrics for addressing 865 
optogenetic effects. Left: unsigned Kolmogorov-Smirnov Distance (KS-D) assay of differences in 866 
first-lick time distribution. Center: signed, bootstrapped comparison of difference in area under 867 
the cdf curves (dAUC). Right: mean and median bootstrapped difference in first-lick time. c, KS-868 
D Assay: all sessions. A: activation sessions; NO: no opsin sessions; I: inhibition sessions. Filled 869 
circles indicate significant difference between stimulated/unstimulated trials on single session 870 
(p<0.025, 2-sided, 2-sample KS test). d, Left: bootstrapped dAUC Assay: all sessions. Filled 871 
circles: significant difference on single session (p<0.025, 2-sided bootstrapped dAUC test, see 872 
Methods). Right: comparison of dAUC in first-lick distributions across all sessions between groups. 873 
Error bars denote bootstrapped 95% confidence interval (*: p<0.05). e, Left: median bootstrapped 874 
difference in first-lick time, stimulated-minus-unstimulated trials. Dots indicate single sessions. 875 
Comparison of median difference in first-lick time across all sessions. Error bars denote 876 
bootstrapped 95% confidence interval (*: p < 0.05). 877 
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 878 
Extended Data Figure 10 | Optogenetic DAN stimulation does not cause or prevent licking. 879 
a,b Stimulation-aligned lick-rate during stimulation-control sessions. Animals expressing ChR2 880 
or stGtACR2 were tested in 1-3 control sessions both before exposure to the self-timed movement 881 
task (red) and in 1-2 control sessions after the end of behavioral training (red). Blue bar indicates 882 
stimulation period (3 s starting at time 0 s). Left: one control session, Right: all sessions. a, 883 
Activation control sessions (no cues or rewards). Animals were head-fixed on the behavioral 884 
platform in the absence of any cues or rewards and were stimulated randomly at the same pace as 885 
the standard 3.3 s self-timed movement task. Activation did not elicit immediate licking in any 886 
single session. b, Inhibition-control sessions (no cues, + random rewards). Animals were head-887 
fixed on the behavioral platform in the absence of cues while receiving juice rewards at random 888 
times. Inhibition did not prevent licking in any single session. 889 
 890 
 891 

 892 

 893 

 894 

 895 
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1. Supplementary Methods 903 

 904 

A. dF/F method characterization and validation 905 

dF/F calculations are intended to reduce the contribution of slow fluorescence bleaching to fiber 906 

photometry signals, and many such methods have been described1,20,26. However, dF/F methods 907 

have the potential to introduce artifactual distortion when the wrong method is applied in the wrong 908 

setting. Thus, to derive an appropriate dF/F method for use in the context of the self-timed 909 

movement task, we characterized and quantified artifacts produced by 4 candidate dF/F techniques. 910 

 911 

Detailed description of complementary dF/F methods.  912 

1. Normalized baseline: a commonly used dF/F technique in which each trial’s 913 

fluorescence is normalized to the mean fluorescence during the 5 s preceding the trial. 914 

2.   Low-pass digital filter: F0 is the low-pass, digital infinite impulse response (IIR)-915 

filtered raw fluorescence for the whole session (implemented in MATLAB with the 916 

built-in function lowpass with fc=5·10-5 Hz, steepness=0.95). 917 
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3.  Multiple baseline: a variation of Method 1, in which each trial’s fluorescence is 918 

normalized by the mean fluorescence during the 5 s preceding the current trial, as well 919 

as 5 trials before the current trial and 5 trials after the current trial.  920 

4.  Moving average: F0 is the 200 s moving average of the raw fluorescence at each point 921 

(100 s on either side of the measured timepoint).  922 

 923 

Although normalized baseline (Method 1) is commonly used to correct raw fluorescence signals 924 

(F) for bleaching, this technique assumes that baseline activity has no bearing on the type of trial; 925 

however, because the mouse decides when to move in the self-timed movement task, it is possible 926 

that baseline activity may differ systematically with the mouse’s choice on a given trial. Thus, 927 

normalizing F to the baseline period would obscure potentially physiologically-relevant signals. 928 

More insidiously, if baseline activity does vary systematically with the mouse’s timing, 929 

normalization can also introduce substantial amplitude scaling and y-axis shifting artifacts when 930 

correcting F with this method (Extended Data Fig. 3c, middle panel). Thus, Methods 2-4 were 931 

designed and optimized to isolate photometry signals minimally distorted by bleaching signals and 932 

systematic baseline differences during the self-timed movement task. Methods 2-4 produced the 933 

same results in all statistical analyses, and the moving average method is shown in all figures. 934 

 935 

Isolating minimally-distorted photometry signals with paired trial analyses of raw fluorescence.  936 

Although slow bleaching prevents comparison of raw photometry signals (F) at one time in a 937 

behavioral session with those at another time, the time-course of appreciable bleaching was slow 938 

enough in the reported behavioral sessions that minimal bleaching occurred over the course of 3 939 

trials (~1 min, Extended Data Fig. 3a). Thus, F was comparable on sets of paired trials. To observe 940 
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the most minimally-distorted photometry signals possible, average F on paired trials was compared 941 

(Extended Data Fig. 3b,c). Because dF/F baseline DAN signals were systematically related to lick 942 

timing, we compared F baseline signals between all paired trials in which an Early (first-lick 943 

between 0.7-2.9s, unrewarded) trial was followed by a Late (first-lick between 3.4-7s, rewarded) 944 

trial (“ER” comparison). To ensure systematic differences did not result from subtle bleaching in 945 

the paired-trial interval, we reversed the ordering contingency and also compared all Late trials 946 

preceding Early trials (“RE comparison”). The same systematic relationship between baseline 947 

signals and first-lick time was found for paired trials analyzed by raw F (Extended Data Fig. 3c, 948 

left panel). 949 

 950 

Quantification of artifactual amplitude scaling/baseline shifts introduced by dF/F processing. 951 

Each Candidate dF/F Method was applied to the same Paired Trial datasets described above. The 952 

resulting paired-fluorescence datasets were normalized after processing (minimum dF/F=0, 953 

maximum=1). The amount of distortion introduced by dF/F was quantified with a Distortion Index 954 

(DI), which was calculated as: 955 

    Distortion Index, DI(t) = abs(F(t)-dF/F(t)) 956 

where F(t) and dF/F(t) are the normalized, paired-trial raw fluorescence signal or dF/F signal at 957 

time t, respectively. t spanned from the beginning of the n-1th trial (-20 s) to the end of the nth trial 958 

(20s), aligned to the cue of the nth trial (Extended Data Fig. 3c, bottom panels). The DI shown in 959 

plots has been smoothed with a 200 ms moving average kernel for clarity. 960 

 961 

As expected, normalizing fluorescence to the baseline period (normalized baseline) erased the 962 

correlation of baseline dF/F signals with first-lick time (Extended Data Fig. 3c, middle panels). 963 
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More insidiously, this also resulted in distortion of GCaMP6f dynamics during the timing interval, 964 

evident in the diminished difference between E-signals compared to R-signals relative to the 965 

shapes observed in the raw fluorescence paired-trial comparison (Extended Data Fig. 3c, middle-966 

bottom panel). However, dF/F Methods 2-4 visually and quantitatively recapitulated the dynamics 967 

observed in the raw fluorescence comparison (Extended Data Fig. 3c, right panels).  968 

 969 

These results were corroborated by time-in-session permutation tests in which datasets for single 970 

sessions were divided into thirds (beginning of session, middle of session, and end of session). The 971 

differences between baseline and ramping dynamics observed in whole-session averages were 972 

present even within these shorter blocks of time within the session (i.e., faster ramping and elevated 973 

baseline signals on trials with earlier self-timed licks). Furthermore, permutation tests in which the 974 

block identity (begin, middle, end) was shuffled showed that this pattern held when trials with 975 

earlier first-licks from the end of the session were compared with trials with later first-licks from 976 

the beginning of the session (and vice versa). 977 

 978 

 979 

B. Derivation of threshold and alternative decoding models 980 

Derivation of threshold models 981 

As a metric of the predictive power of ramping DAN signals on first-lick time, we derived a 982 

threshold-crossing model. A threshold-crossing event was defined as the first time after the cue 983 

when the photometry signal exceeded and remained above a threshold level up until the time of 984 

first-lick on each trial. Importantly, while the analysis approach is reminiscent of pacemaker-985 

accumulator models for timing, we make no claims that the analysis is evidence for pacemaker-986 
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accumulator models. Rather threshold-crossing times provided a convenient metric to compare the 987 

rate of increase in signals between trials.  988 

 989 

Photometry timeseries for GCaMP6f and tdt were de-noised by smoothing with a 100ms Gaussian 990 

kernel (kernel was optimized by grid screen of kernels ranging from 0, 30, 50, 80, 100, 150, 200 991 

ms to minimize noise without signal distortion). To completely exclude the sensory- and motor-992 

related transients locked to the cue and the first-lick events, the ramping interval was 993 

conservatively defined as 0.7 s post-cue up until 0.6 s before the first-lick. To eliminate chance 994 

crossings due to noise, we imposed a stiff, debounced threshold condition: to be considered a 995 

threshold crossing event, the photometry signal had to cross the threshold from low-to-high and 996 

remain above this level until the end of the ramping interval.  997 

 998 

To derive an unbiased threshold for each session, we tested 100 evenly-spaced candidate threshold 999 

levels spanning the minimum-to-maximum photometry signal during the ramping interval for each 1000 

session. Depending on threshold level, some trials never crossed, i.e., signal always remained 1001 

below threshold or started and ended above threshold. Thus, the lowest candidate threshold for 1002 

which there was a maximum number of trials crossing during the timing interval was selected as 1003 

the “mid-level” threshold-crossing point. This threshold was specific to each photometry signal 1004 

tested on each session. Threshold-crossing time was included in the decoding model as the 1005 

normalized time on the ramping interval (0,1). If a trial never crossed threshold, it was encoded as 1006 

a zero. If no trials ever crossed threshold, the threshold predictor was encoded as a vector of ones, 1007 

thus penalizing the model for an additional predictor but providing no new information. 1008 

 1009 
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Multi-threshold Model  1010 

An alternative model employed 3 unbiased thresholds: 1) the lowest threshold with ≥50 trials 1011 

crossing (“min”); 2) the lowest threshold with the most crossings (“mid,” described above); and 3) 1012 

the highest threshold with ≥50 trials crossing (“max”). For tdt datasets, trials rarely met the 1013 

monotonic threshold constraint (usually the signals oscillated above and below the threshold 1014 

throughout the ramping interval, failing to meet the debouncing constraint). Thus, to include tdt 1015 

signals as conservatively as possible, we relaxed the 50-trial minimum constraint, taking the 1016 

threshold with the most trials crossing, which was usually around 10 or fewer. The addition of 1017 

more thresholds did not substantially improve the cross-validated model compared to the single-1018 

threshold model (Extended Data Fig. 8c). 1019 

 1020 

Principle component analysis (PCA) threshold-crossing models 1021 

In another version of the decoding model, the threshold-crossing procedures were applied to 1022 

ramping intervals fit with the first three PCs (as described in Methods) to derive a PCA version of 1023 

the single-threshold and multi-threshold models. PCA analysis on tdt datasets showed no 1024 

consistent PCs, and thus these PCs were not included in the decoding model. Instead, the actual 1025 

tdt data was employed in the threshold model as in the other models described. 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 
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2. Supplementary Discussion 1033 

 1034 

A unifying Reward-Prediction-Error based framework underlying dynamic DAN activity in 1035 

timing tasks. 1036 

A framework that has explained many disparate experimental results from the dopaminergic 1037 

system is temporal difference (TD) learning with reward-prediction errors (RPE)27,33. In this 1038 

framework, DAN activity is thought to reflect the moment-to-moment difference in the animal’s 1039 

expectation versus its perception of the value of its current state, where value is defined as the 1040 

temporally-discounted expectation of total future reward. In classical trace-conditioning 1041 

paradigms, DANs fire in transient bursts to unexpected rewards and reward-predicting cues, 1042 

whereas they pause their firing when expected reward is omitted. Indeed, we observed RPE-like 1043 

signals in the cue-related transient, dips in activity after unrewarded first-licks, and surges in 1044 

activity following rewarded first-licks (Fig. 1c-e, Extended Data Fig. 4a-d). Persistence of RPE-1045 

like signals in well-trained animals has been suggested to arise from the inherent imprecision in 1046 

neural timing2, which may reflect the animal’s moment-to-moment uncertainty of its current 1047 

state—i.e., its  position in time–and, by extension to our task, uncertainty about its accuracy for a 1048 

given self-timed lick30. Indeed, positive-going RPE-like signals were strongest for first-licks 1049 

closest to the reward-boundary, presumably when the mouse’s “confidence” of reward was lowest, 1050 

consistent with the greatest RPE occurring when the mice were least certain of success (Extended 1051 

Data Fig. 4a-d).  1052 

 1053 

Whereas RPE-frameworks have explained transient bursts and pauses in DAN activity during 1054 

trace conditioning and other types of learning experiments, DAN activity can also change more 1055 
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slowly30. For example, “ramping” signals build up over seconds during goal-directed navigation19, 1056 

bandit tasks in which animals must complete multiple goals to receive reward25,26, and tasks with 1057 

visual cues of proximity to reward20. It has been suggested that DANs could signal different 1058 

information via slow changes in activity (e.g., motivation, ongoing value, vigor) compared to fast-1059 

timescale activity (e.g., post-hoc RPE signals for learning), and a number of proposals have 1060 

suggested that DANs multiplex different kinds of information over different timescales and 1061 

contexts21,26.  1062 

 1063 

However, recent models have proposed RPE-based explanations that may be able to reconcile 1064 

these seemingly disparate dopamine signals20,27,30. While these models do not refute the possibility 1065 

that DANs could encode other types of information (e.g., value, vigor, etc.), they are attractive for 1066 

their parsimonious explanation of how fast time-scale phenomena and slowly-evolving ramps 1067 

could arise from the same underlying RPE-based calculation. In short, these models employ 1068 

principles from TD learning to show how certain shapes of the value function (i.e., the assignment 1069 

of values to the series of behavioral states comprising a task) can give rise to a continuously 1070 

changing RPE, even in well-trained animals20,27,30,34.  1071 

 1072 

We were interested in whether an RPE-based framework could explain the results found in our 1073 

self-timed movement task as well as results from other timing tasks1. To approach this question, 1074 

we applied a key feature of TD learning algorithms to determine what an RPE-like signal would 1075 

look like in different kinds of timing tasks. Specifically, we took advantage of the fact that RPE is 1076 

proportional to the derivative of the subjective value function under conditions of state 1077 
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uncertainty27,30, as is the case during timing tasks in which the animal must rely on its own internal 1078 

representation of time to guide behavior27. 1079 

 1080 

Thus, if the value landscape for a given behavioral task is known, and if DAN activity encodes 1081 

RPE, the RPE-based framework makes predictions about the expected shape of dynamic DAN 1082 

activity during the task. In a recent study, similar applications of this principle predicted the 1083 

ramping DAN signals that were observed in virtual reality (VR) tasks in which animals were 1084 

moved passively through VR spaces, as well as when the animals passively viewed abstract, 1085 

dynamic visual cues indicating proximity to reward20, suggesting the ramping in our task could be 1086 

explained from similar principles.  1087 

 1088 

RPE-predictions for DAN responses during self-timed movement. 1089 

In a simple TD learning model of self-timed movement, time may be modeled as a continuous set 1090 

of states through which a Markov agent must traverse to receive reward35 (Supplementary Fig. 1a). 1091 

At each state transition (timestep), the agent must decide whether to move (lick) or to wait based 1092 

on the probability of transitioning to a reward or failure state. If the agent is an optimal timer, its 1093 

subjective approximation of its current state, 𝜏, accurately tracks veridical time, t, and it will thus 1094 

withhold movement until the first moment at which reward will be available in response to licking 1095 

(3.3 s in our experiment).  1096 

 1097 

The value landscape of this model can be understood intuitively. When the cue event occurs, a 1098 

well-trained agent can expect an increased possibility of reward in the next few seconds; thus, at 1099 

this moment, value increases. However, reward never occurs within the first 3.3 s of the standard 1100 
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timing task we implemented; thus, value at the cue is necessarily lower than value at 3.3 s. In fact, 1101 

value will constantly increase as time approaches 3.3 s. Thus, as long as the agent withholds licks, 1102 

the value landscape, 𝑉! , during the first few seconds is a monotonically increasing, convex 1103 

function36 (Supplementary Fig. 1b). If the agent is an optimal timer, the subjective approximation 1104 

of the value function, 𝑉#", matches the true value function, and 𝑉#" = 𝑉!. 1105 

 1106 

However, we assume that, because the timer does not have access to the true state identity, t, it is 1107 

never certain of its subjective approximation of its state, 𝜏. Under conditions of state uncertainty, 1108 

RPE is approximately the derivative of the subjective value function20,27, 𝛿" ≈	𝑉#′", where 𝛿" is 1109 

RPE at subjective time 𝜏, and 𝑉#′" is the time-derivative of the subjective value function. Thus, the 1110 

shape of the RPE function, 𝛿" is also quite simple: a transient increase at the cue followed by a 1111 

slowly-evolving ramp (Supplementary Fig. 1c). If the RPE function is measured by a calcium 1112 

indicator such as GCaMP6f, the binding kinetics of the indicator would tend to blur the RPE 1113 

function, which we approximated by smoothing (Supplementary Fig. 1d).  1114 

 1115 
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 1116 

Supplementary Figure 1 | Value and RPE Landscapes for an optimal timer predict 1117 

DAN responses during the self-timed movement task. a, State space and probability of 1118 

state transition for an optimal timer. Gold-shaded state is the first state from which reward is 1119 

available, and thus is when the first-lick is predicted to occur. b, Estimated value function 𝑉#!, 1120 

where 𝑉#" ≈ 𝑉!  for an optimal timer. An exponential value landscape is shown, consistent 1121 

with prior literature27. However, any sufficiently convex function could be implemented with 1122 

the same result27,30. The agent is expected to first-lick at the peak of the trajectory. c, RPE 1123 

function for an optimal timer, estimated as 𝛿" ≈	𝑉#′", the derivative of the subjective value 1124 

function. Y-axis scaled to show ramp. d, Predicted DAN GCaMP6f signals for an optimal 1125 

timer. The RPE function was smoothed with a gaussian kernel spanning ca. 10% of the 1126 

interval to approximate GCaMP6f off-dynamics. 1127 

 1128 
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The modeled RPE function mirrors the shape of the dynamics observed in DAN signals: a cue-1129 

related transient followed by a slow ramp up to the time of first-lick. However, unlike the optimal 1130 

timer in this model, mice, like humans, exhibit suboptimal timing behavior with variability 1131 

proportional to the duration of the timed interval2. It has been proposed that this variability in 1132 

timing results from imprecision in an internal clock, referred to classically as the internal 1133 

“pacemaker37.” When the pacemaker is fast, self-timed movements occur relatively early, whereas 1134 

when the pacemaker is slow, later movements occur. These changes in the pacemaker rate would 1135 

correspond to the mouse traversing the set of subjective states, 𝜏, at different rates than the passage 1136 

of veridical time, 𝑡  (Supplementary Fig. 2a), resulting in relative compression and stretching, 1137 

respectively, in the subjective value function, 𝑉#"  (Supplementary Fig. 2b), with corresponding 1138 

compression/stretching of the RPE function (Supplementary Fig. 2c).  1139 

 1140 

 1141 
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 1142 

Supplementary Figure 2 | Compressed and stretched Value and RPE Landscapes for a 1143 

sub-optimal timer predict dynamic DAN responses during the self-timed movement task, 1144 

but do not capture baseline offsets. a, Simple state space of self-timed movement task for a 1145 

suboptimal timer with a fast pacemaker. The fast pacemaker “compresses” state space30,35, 1146 

resulting in traversal of the timing states faster than veridical time. The mouse can only make 1147 

a decision based on which state it believes itself in; thus first-lick is expected to occur early 1148 

(gold-shaded state). b, A compressed subjective value function (𝑉#", blue) reflects relatively 1149 

fast traversal through the value landscape compared with that of veridical time (𝑉!, black). 1150 

Conversely, stretched 𝑉#" (red) reflects slow traversal, consistent with a slow pacemaker. The 1151 

animal is expected to lick at the peak of the trajectory. c, Smoothed estimated RPE function 1152 

(𝑉#′" ≈ 𝛿"). Compression/stretching of the value function produces ramping dynamics similar 1153 

to those observed in DANs (d) and striatal dopamine (Fig. 1f). However, this model alone 1154 
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does not explain the more tonic baseline offsets that were anti-correlated with upcoming 1155 

movement time. 1156 

 1157 

Strikingly, as this simple RPE-based model predicts, DAN signals observed during our self-timed 1158 

movement task show different ramping dynamics depending on when the animal actually moved 1159 

(Supplementary Fig. 2d), consistent with compression/stretching of the subjective value and RPE 1160 

functions. When the animal moved relatively early (perhaps corresponding to a fast pacemaker), 1161 

DAN ramping unfolded with a steeper slope, as if the ramping period were compressed. 1162 

Conversely, when the animal moved late (perhaps corresponding to a slow pacemaker), DAN 1163 

ramping unfolded with a shallower slope, as if the ramping interval were stretched. The idea of 1164 

compression/stretching of DAN ramps was supported by our encoding model (Fig. 2, Extended 1165 

Data Fig. 7), for which we needed to add a timing-dependent “stretch factor” to best capture the 1166 

variance in GCaMP6f signals during the timed interval. Together, these observations could be 1167 

explained by DANs encoding an RPE-like signal related to the animal’s “belief” of its position in 1168 

objective time, 𝜏, as derived from in its position along the subjective value trajectory during the 1169 

timing interval of the task. 1170 

 1171 

In fact, a recent model described how a timing mechanism instantiated by the nigrostriatal system 1172 

could lead to (the well-known) variability in self-timed intervals by stretching or compressing of 1173 

subjective value trajectories30. The model posits that dopamine modulates the pacemaker rate 1174 

(consistent with pharmacological and lesion studies), with increased dopamine availability (or 1175 

efficacy) speeding the pacemaker, and decreased dopamine slowing the pacemaker4-5,8-11. In turn, 1176 

the pacemaker controls the encoding of subjective time, and thus the steepness of the value 1177 
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function with respect to objective, veridical time. It follows that variation in dopamine availability 1178 

would compress or stretch the value landscape to varying degrees from trial-to-trial. This model is 1179 

consistent with our findings of variable ramping slope in DANs signals from trial-to-trial. It is also 1180 

consistent with neural recordings from striatal spiny projection neurons and parietal cortical 1181 

neurons during similar self-timed movement tasks, for which temporal sequences of striatal and 1182 

cortical firing during timing were compressed for early movements and stretched for late 1183 

movements6,24.  1184 

 1185 

While the RPE-based view of DAN activity captures the dynamic DAN signals we observed, our 1186 

simple RPE model alone does not capture the baseline offsets in DAN signals that were predictive 1187 

of movement timing even after controlling for previous trial outcome and ongoing nuisance 1188 

movements (Fig. 3, Extended Data Fig. 6c). More complex RPE-based explanations for these tonic 1189 

offsets in DAN signals could be imagined with further assumptions (e.g., states like the pre-cue 1190 

delay could also contain timing states that create offsets before the trial begins, etc.), but a 1191 

parsimonious explanation for how and why these offsets emerge requires further investigation. 1192 

Mohebi et al. recently showed baseline differences in the amount of dopamine in the nucleus 1193 

accumbens core that were correlated with the recent history of reward rate: higher recent reward 1194 

rates were related to higher tonic dopamine. However, in our task, animals tended to move later 1195 

toward the end of sessions, resulting in periods of relatively high reward rate when the average 1196 

tonic baseline signal was lower (baseline preceding rewarded trials—by definition, later 1197 

movements—was systematically lower in our task, Fig. 1d-f), suggesting a more complex 1198 

relationship between tonic DAN activity and reward rate in our task. While the origin of offsets in 1199 

DAN signals remains unclear, these offsets were nonetheless inversely related to the first-lick time, 1200 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2020. . https://doi.org/10.1101/2020.05.13.094904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.094904


 61 

and thus directly related to the (inferred) pacemaker rate, consistent with pharmacological and 1201 

lesion studies positing a positive correlation between dopamine availability and pacemaker rate4-1202 

5,8-11,30. 1203 

 1204 

Ramping signals in our photometry experiments were measured from a population of DANs. An 1205 

important future question is whether ramps are also present at the level of individual neurons, or 1206 

rather represent a progressive recruitment of individual neurons, or some combination of both. 1207 

Prior studies have reported ramping signals in individual neurons during tasks with visual feedback 1208 

of distance to reward20, whereas others have observed decoupling between DAN firing rates and 1209 

downstream DA release26, making it unclear whether electrophysiology would be capable of 1210 

addressing this question. Observation of individual neurons expressing calcium indicators with 1211 

GRIN-lens equipped endoscopes may be better suited to this question. 1212 

 1213 

RPE-based predictions for DAN responses during a temporal bisection task. 1214 

Whereas DAN signals during our self-timed movement task were consistent with classic 1215 

observations of the influence of dopamine on the speed of the pacemaker, a recent study employing 1216 

a different timing task found more complex DAN dynamics during timing. Soares et al. recorded 1217 

SNc DAN GCaMP6f signals with fiber photometry as mice executed a classic temporal bisection 1218 

perceptual task1 (Supplementary Fig. 3a). Trials began when mice entered a nose-poke port and 1219 

received an auditory start-timing cue. Mice had to remain in the port throughout a variable timing 1220 

interval, which was terminated with a stop-timing auditory cue. Mice then reported whether the 1221 

interval was shorter or longer than a criterion time (1.5 s) by choosing a left or right nose-poke 1222 

port corresponding to a “long” or “short” judgment. Mice were trained to categorize intervals 1223 
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spanning 0.6-2.4 s. As expected, trials with more extreme intervals were easier for the mice, 1224 

whereas trials with intervals closer to the 1.5 s criterion time elicited chance performance 1225 

(Supplementary Fig. 3b). 1226 

 1227 

 1228 

Supplementary Figure 3 | A temporal bisection task shows relatively high DAN signals 1229 

during the timing interval when the inferred pacemaker rate is relatively fast. Figures 1230 

adapted from Soares et al., 20161. a, Task schematic. b, Psychometric curve for timing 1231 

intervals of different duration. Criterion time: 1.5 s. c, Start-timing cue-aligned average SNc 1232 

DAN GCaMP6f signals. Second peak occurs just after the stop-timing cue (intervals: 0.6, 1233 

1.05, 1.26, 1.74, 1.95, 2.4 s). Figure recolored to indicate average inferred pacemaker rate. 1234 

Red: slow; blue: fast. Relative dF/F amplitude during baseline and immediately prior to stop-1235 

timing cue shown left and right. dF/F amplitudes during timing are higher when the inferred 1236 

pacemaker rate is fast. Left: Correct trials. Right: Incorrect trials show the same dF/F 1237 

relationship with pacemaker rate. 1238 

Figure to be modified from Soares et al, 2016, Figure 2. Awaiting reprint permissions. 
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 1239 

DANs exhibited complex dynamics during the bisection task, starting with a sharp transient after 1240 

the start-timing cue and ending with second transient after the stop-timing cue (Supplementary Fig. 1241 

3c). Between the start-timing and stop-timing cues, DAN signals exhibited a U-shape with 1242 

increasing time, which was visible for trials with longer intervals but was truncated prematurely 1243 

for the shorter intervals. The authors focused their analyses on the transient occurring after the 1244 

stop-timing cue. Short judgments (suggesting a slow pacemaker) were accompanied by relatively 1245 

high-amplitude transients after the stop-cue, whereas long judgments (suggesting a fast pacemaker) 1246 

showed relatively low-amplitude transients. These results seemed to suggest that relatively high 1247 

DAN activity reflected a slow pacemaker, the opposite of what is expected based on the bulk of 1248 

pharmacological and lesion studies30, as well as the trend we observed during our self-timed 1249 

movement task. 1250 

 1251 

This surprising finding could be a unique feature of the bisection task. Unlike self-timed 1252 

movements, in which animals directly report elapsed time with a movement, the temporal bisection 1253 

task requires an additional computational step, in which the timed interval must be categorized as 1254 

“long” or “short.” However, prior pharmacological studies employing the bisection task found 1255 

results consistent with the classic view that higher dopamine availability is associated with a faster 1256 

pacemaker30,38—opposite the interpretation of Soares et al., but consistent with the findings of our 1257 

self-timed movement task.  1258 

 1259 

The discrepancy between our results and those found by Soares et al. could perhaps be traced to 1260 

differences in the way DAN signals were analyzed. We focused our attention on DAN signals 1261 
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unfolding during timing in our self-timed movement task, whereas these signals were not explored 1262 

by Soares et al. We thus asked two questions: 1. What correlations exist between DAN signals and 1263 

pacemaker rate in the bisection task before the timing interval? And, 2. What correlations exist 1264 

during the timing interval itself? 1265 

  1266 

Before addressing these questions, we note that the relationship between pacemaker and bisection 1267 

judgment is not as straightforward as in self-timed movement, and thus we recolored 1268 

Supplementary Fig. 3c to clarify this, employing the following intuition: For a trial to be correct 1269 

in the bisection task, on average, the pacemaker must be either accurate or “conservatively 1270 

inaccurate.” In other words, a correct “short” judgment requires either accurate timing or a slow 1271 

pacemaker (Supplementary Fig. 3c, red curves). Conversely, a correct “long” judgment requires 1272 

either accurate timing or a fast pacemaker (Supplementary Fig. 3c, blue curves).  1273 

 1274 

When we considered DAN signals before the timing interval for correct trials in the Soares et al. 1275 

study (Supplementary Fig. 3c, left), we noticed what appears to be two strata of signal levels. Trials 1276 

with “long” judgments (fast pacemaker on average) had relatively high baseline signals, whereas 1277 

trials with “short” judgments (slow pacemaker on average) had lower baseline signals, consistent 1278 

with the relationship between baseline offsets and pacemaker rate that we observed in our self-1279 

timed movement task. As in our task, these baseline offsets remained present during the timing 1280 

interval, resulting in the same stratification of dF/F signals immediately prior to the stop-timing 1281 

cue (except for the very earliest time, 0.6s, which overlaps decaying GCaMP6f signals related to 1282 

the start-timing cue, likely causing an artifactual inflation of the signal just prior to the stop-cue 1283 

due to the off-kinetics of the calcium indicator or kinetics of calcium clearance more generally). 1284 
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Thus, it generally appears that DAN activity was higher on trials with fast pacemaker rates, both 1285 

during and before the interval in which the animal was actually timing. Intriguingly, incorrect 1286 

trials (to the right in Supplementary Fig. 3c) showed a relative convergence of the baseline signals 1287 

preceding the start-cue, but then signals diverged during the timing interval, resulting in relatively 1288 

high signals at the time of the stop-cue for incorrect “long” choices (i.e., a fast pacemaker), but 1289 

relatively low signals at the time of the stop-cue for incorrect “short” choices (i.e., a slow 1290 

pacemaker). This is consistent with the patterns observed on correct trials. Interpreted thusly, the 1291 

Soares et al. result is consistent both with our results and with classic pharmacological studies 1292 

relating higher/lower dopamine availability to faster/slower pacemaker rates, respectively. Soares 1293 

et al. presented their subsequent analyses with these baseline differences normalized-out in some 1294 

way (Fig. 3 of Soares et al.). It is possible that this “zeroing out” of the baseline offset may have 1295 

hindered efforts to detect consistent effects during the timing interval due to reordering of the 1296 

traces. 1297 

 1298 

Because baseline offsets in the bisection task appear similar to those in our self-timed movement 1299 

task, we asked whether dynamic DAN signals in the bisection task could similarly be explained 1300 

by the task’s RPE landscape. In their investigation of the stop-timing cue-related transient, Soares 1301 

et al. showed that its amplitude is well-explained by a combination of temporal surprise and 1302 

behavioral performance, and we applied these parameters to derive a value landscape consistent 1303 

with their bisection task.  1304 

 1305 

The inferred value landscape of the bisection task for an optimal agent was built from a few 1306 

assumptions (Supplementary Fig. 4a): 1307 
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 1308 

1. As in our self-timed movement task, value increases immediately at the start-cue and  1309 

continues to rise toward the time of expected potential reward delivery.  1310 

 1311 

2. Because the longest interval is 2.4 s, the time until potential reward is known to be no more 1312 

than ~3 s (including the time to report judgment). However, due to temporal uncertainty 1313 

and the fact that a false start (leaving the port before the stop-timing cue) results in an error 1314 

and loss of reward, there is a second jump in the value function at the time of the stop-cue 1315 

when the feedback of the tone reorients the value function and indicates the opportunity to 1316 

collect reward within a few hundred milliseconds.  1317 

 1318 

3. Because value is temporally discounted at the start-cue by the possibility of the longest-1319 

possible interval, any stop-cue occurring before 2.4 s results in a sudden “teleportation” 1320 

through the value landscape to the final limb of the task that occurs just before the judgment 1321 

and ascertainment of trial outcome, similar to the jump in the value function in a recently-1322 

reported, virtual reality, spatial teleportation task20. Thus, assuming the value function 1323 

trends upwards steadily, the amplitude of RPE-related transients following the stop-cue 1324 

would decrease as the interval duration increases, because the sudden jump in the value 1325 

function becomes progressively smaller.  1326 

 1327 

4. To capture aspects related to behavioral performance, we additionally included contours in 1328 

the value function during the timing interval to reflect the probability of a correct choice 1329 

for intervals of different lengths. Specifically, a relative minimum in the value function 1330 
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occurs near 1.5 s, when predicted performance is worst. However, a stop-timing tone near 1331 

the criterion time also results in a smaller jump in the value function because the probability 1332 

of a correct decision is also lower. Thus, the increase in value at the moment of decision 1333 

was adjusted by the probability of a correct choice. 1334 

 1335 

5. As in the simple RPE-model of our self-timed movement task, we modeled changes in 1336 

pacemaker rate as compression/stretching of the subjective value landscape with respect to 1337 

veridical time. 1338 

 1339 

6. The agent traverses timing states during the timing interval, similar to the timing states in 1340 

the self-timed movement task, but unlike our task, the bisection task does not require the 1341 

agent to decide when to move. We assume the need to make a timed movement imposes a 1342 

need for the agent to be relatively certain of its subjective timing state, 𝜏, to make a decision, 1343 

even though it is uncertain of its true state, t. The bisection task, on the other hand, is more 1344 

similar to classical conditioning tasks in which the timing interval is not in the agent’s 1345 

control, and thus subjective state uncertainty increases with the distance from the last state-1346 

informative cue30. Thus, we took into account temporal blurring of the subjective state 1347 

function, which would tend to reduce the convexity of the subjective value function and 1348 

reduce the amplitude of ramping during the timing interval30. However, adding temporal 1349 

blurring does not substantially change the fit-shape in our simplified model, and versions 1350 

with or without blurring can reproduce the shape of the dynamic DAN signals. 1351 

 1352 
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Together, we arrived at a model of the RPE landscape for each of the six tested interval durations 1353 

(Supplementary Fig. 4b,c). Importantly, this simple RPE-based model accurately captures the 1354 

relative categorical amplitudes of the stop-timing cue-related transients, as follows: If the 1355 

instantaneous DAN activity at the time of the stop-timing cue is relatively high, this would indicate 1356 

that the animal is further along in the subjective value trajectory, resulting in 1) a long judgment, 1357 

and 2) a relatively smaller RPE transient, because the underlying subjective value was higher at 1358 

that moment. Conversely, if instantaneous DAN activity is relatively low at the stop-timing cue, 1359 

this this would indicate that the animal is not very far along the subjective value trajectory, leading 1360 

to 1) a short judgement and 2) a relatively larger stop-cue-related RPE transient, because the 1361 

underlying subjective value was relatively low just before the stop-cue.  1362 

 1363 

Now consider a particular (objective) time interval near the criterion time, for which the animal 1364 

makes a mix of “long” and “short” choices (e.g., 1.74s; Supplementary Fig, 3b). Soares et al. found 1365 

that the amplitude of the stop-timing cue-related GCaMP6f transient tended to be bigger when the 1366 

animal made short choices, and this was taken as evidence that elevated DAN activity slows the 1367 

internal clock. However, our model predicts that the size of the stop-cue-related transient will be 1368 

inversely related to the amplitude of the underlying subjective value at that point, and thus 1369 

inversely related to elapsed subjective time. It thus follows that if subjective time is more advanced 1370 

on a given trial (i.e., faster pacemaker), the animal would tend to choose the long judgment on that 1371 

trial, and the stop-timing RPE transient would be smaller. Conversely, if subjective time is less 1372 

advanced on a trial (i.e., slower pacemaker), the animal would tend to choose the short judgment, 1373 

and the stop-timing RPE transient would be larger.  1374 

 1375 
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Our RPE model accurately predicts the results of Soares et al.; however, our model holds that 1376 

elevated DAN activity speeds the internal clock, consistent with most pharmacological studies but 1377 

opposite the interpretation of Soares et al. Thus, our RPE-based model suggests a parsimonious 1378 

explanation for DAN activity in both the self-timed movement and temporal bisection paradigms, 1379 

with (1) relatively high DAN activity corresponding to a fast pacemaker; manifesting in (2) 1380 

compression of the value landscape; thereby leading to (3) early movements (in the self-timed 1381 

movement task) or long judgments (in the temporal bisection task). 1382 

 1383 

 1384 

Supplementary Figure 4 | Subjective Value and RPE Landscapes for the temporal 1385 

bisection task predict dynamic DAN responses during the temporal bisection task, but 1386 

do not capture baseline offsets. a, Estimated value function 𝑉#! , where 𝑉#" ≈ 𝑉!  for an 1387 

optimal timer on a 2.4 s trial. Grey lines: test interval times. Green dashed line: criterion time 1388 

(1.5 s). Value increases approaching the time when reward is available, increasing abruptly 1389 

at the start- and stop-timing cues (0 and 2.4 s). b, Smoothed RPE function for an optimal 1390 

timer, estimated as 𝛿" ≈	𝑉#′" , the derivative of the subjective value function. The RPE 1391 

function was smoothed with an asymmetrical gaussian kernel spanning ca. 28% of the 1392 

interval to approximate GCaMP6f off-dynamics.  c, Predicted DAN GCaMP6f signals for an 1393 
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optimal timer for the six test interval times. Traces truncated before reward collection for 1394 

clarity. Right: relative simulated dF/F amplitude prior to the stop-timing cue and subsequent 1395 

peak response. Amplitude before the stop-timing cue is directly proportional to clock speed; 1396 

amplitude at the stop-timing cue-related peak is inversely proportional to clock speed. 1397 

 1398 

Limitations of the RPE-based model. 1399 

The simple RPE-based models presented here explain dynamic DAN signals in both the bisection 1400 

task and our self-timed movement task, but they do not explain the origin of baseline offsets. 1401 

Mohebi et al.26 recently-proposed that baseline offsets in ventral striatal dopamine levels could 1402 

reflect the average recent reward rate, but we found that offset amplitude in DAN signals is at least 1403 

partially independent of recent trial history during the self-timed movement task. It is possible that 1404 

baseline variation arises from slow, random fluctuations in DAN activity, but further work is 1405 

needed to explore the origins of these signals.  1406 

 1407 

A second issue is the impact of optogenetic DAN activation and suppression on the rate of the 1408 

pacemaker. In our self-timed movement task, DAN activation promoted early movements, 1409 

consistent with increasing the pacemaker rate, whereas suppression promoted late movements, 1410 

consistent with slowing the pacemaker rate (Fig. 4). However, Soares et al. reported an opposite 1411 

effect for optogenetic manipulation during the bisection task, at least for DAN activation.  1412 

 1413 

This difference between the tasks could be reconciled by a recent theoretical model proposed by 1414 

Mikhael and Gershman to explain the behavior of the pacemaker in a wide range of classical 1415 

conditioning and timing studies30. Their model shows that the pacemaker rate is expected to be 1416 
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updated at the time of reinforcement by a Hebbian-like, bidirectional learning rule. If reward 1417 

occurs exactly at the expected time, there is no update in the pacemaker rate. However, if 1418 

reinforcement occurs before the expected time, this is interpreted as feedback that the pacemaker 1419 

was running too slowly; thus, the update rule increases the pacemaker rate leading to expectation 1420 

of reward at an earlier time on the next trial. Conversely, if reinforcement occurs after it was 1421 

expected, this is interpreted as feedback indicating an overly fast pacemaker, resulting in an update 1422 

that slows the pacemaker and expectation of a later reward on the next trial. The same principles 1423 

apply to ongoing RPE during timing tasks. 1424 

In our self-timed movement task, we activated or inhibited DANs only up to the time of first-lick, 1425 

which Mikhael and Gershman’s model predicts will produce an effect on the pacemaker rate 1426 

consistent with the sign of the manipulation (activate: increase, inhibit: decrease). However, Soares 1427 

et al. continued optical stimulation past the end of the timing interval, until the end of the trial. 1428 

When Mikhael and Gershman modeled stimulation in the Soares et al. task, they found that 1429 

simulated DAN activation increased the pacemaker rate during the timing interval, but the 1430 

continuing stimulation after the stop-timing cue rapidly counteracted this effect, resulting in 1431 

slowing of the modeled pacemaker between the stop-cue and the judgment, leading an effect on 1432 

pacemaker rate inconsistent with the sign of the manipulation, as observed in Soares et al. If this 1433 

model is correct, the effect of stimulation on the animal’s judgment in the Soares et al. task may 1434 

have arisen due to continued manipulation of DAN activity after the timing interval had ended. A 1435 

“retrospective” effect of this sort might seem counterintuitive, but such retrospective effects have 1436 

long been observed in perceptual studies, in which recall of sensory stimuli can be enhanced by 1437 

additional sensory cues presented shortly after stimulus offset, suggesting that sensory events are 1438 

“buffered” briefly and can be altered by neural activity occurring between the sensory event and 1439 
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the perceptual decision39,40. It is possible that a similar process could occur in the bisection task if 1440 

DAN stimulation extends past the timing interval, although this is speculative. More work is 1441 

needed to reconcile the optogenetic results in the self-timed movement and bisection tasks. To 1442 

start, it would be informative to repeat the optogenetic experiments in the bisection task with 1443 

optical stimulation limited to the period of the timed intervals only. 1444 
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