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SUMMARY

Drosophila sLNv clock neurons release the co-packaged neuropeptides PDF and sNPF to regulate circadian 
behaviors and nighttime sleep. 1–4 Many studies of membrane potential and cytoplasmic Ca 2+ at the sLNv 
soma emphasized elevations late at night or in the very early morning, 5–9 although action potential activity 
and synaptic release were not quantified. Recently, exocytosis of neuropeptide-containing dense-core 
vesicles (DCVs) at sLNv terminals was found to peak hours later at midmorning. 10 To resolve the basis of 
the timing mismatch between somatic measurements and terminal exocytosis, recently developed probes 
were used to measure daily rhythms in sLNv neuron synaptic Ca 2+ and sNPF release. Remarkably, at mid-

morning after soma Ca 2+ has dropped, both Ca 2+ spiking and clock-dependent native neuropeptide release 
peak in the distal terminals of the protocerebrum. Furthermore, Ca 2+ in the soma and terminals differ in de-

pendence on Ca 2+ influx. Finally, synaptic DCV exocytosis requires Ca 2+ spike activity at terminals that is not 
evident at the soma. These results lead to two striking conclusions. First, soma Ca 2+ recording, which is the 
focus of many circuit studies, is not indicative of presynaptic Ca 2+ and neuropeptide release in distal sLNv 
terminals. Second, daily clock- and activity-dependent sLNv terminal neuropeptide release occurs many 
hours in advance of known sLNv neuropeptide effects on nighttime sleep and morning behavior.

RESULTS AND DISCUSSION

sLNv neurons, via their release of PDF, are important morning 

clock neurons. 1,4 Thus, for understanding the circadian clock cir-

cuit, it is of interest to determine when activity-dependent synap-

tic neuropeptide release from sLNv terminals occurs during the 

day. In the absence of direct assays of neuropeptide release, in-

vestigators first recorded membrane potential in the sLNv soma. 

Initial membrane potential recordings from animals raised with 

an equinox lighting time schedule (LD, 12 h light:12 h dark) 

showed soma resting membrane potential (RMP) rises at night. 

However, although action potentials (APs) were observed 5 and 

are known to evoke synaptic transmission, their frequency dur-

ing the day was not reported. More recently, 9 sLNv RMP and 

burst incidence were quantified throughout the day, showing 

that RMP rises during the night and falls during the day, and 

bursting peaks in an 8-h window (ZT20–4). Representative traces 

further suggested APs per burst may also change during the day, 

but AP frequency was not quantified. Similarly, noise analysis of 

a membrane potential indicator at only two time points (just after 

lights on vs. just after lights off) showed a widespread increase 

in the power of the noise spectrum between 1 and 5 Hz at

daybreak. 11 However, AP responses of <0.1 s (corresponding 

to >10 Hz), as well as bursts with durations of seconds, 9 would 

not produce power spectrum peaks within the frequency range 

analyzed, and no perturbations were used to link noise changes 

to APs. Therefore, because of data acquisition and analysis lim-

itations, membrane potential recordings have not determined 

when AP activity, the trigger for synaptic transmission, peaks 

in sLNv neurons.

More recently, soma Ca 2+ recording has been adopted as a 

surrogate for activity in many studies. Notably, Liang et al. 6–8 

showed that sLNv soma Ca 2+ rises at night to produce a broad

∼6-h plateau with a peak at ∼ZT23. Noise in the soma Ca 2+ sig-

nal of clock neurons was also studied. 8 For the sLNv recordings, 

the power spectrum does not show results indicative of APs or 

their bursts. Furthermore, Ca 2+ changes were not shown to de-

pend on Ca 2+ influx, which would be expected if they were pro-

duced by AP activity. Therefore, it is not clear that sLNv soma 

Ca 2+ , which peaks late at night, reports on the activity that drives 

synaptic neuropeptide release.

Given this context, it is striking that dense-core vesicle (DCV) 

exocytosis assayed with an exogenous neuropeptide tagged 

with a fluorogen-activating protein (Dilp2-FAP) 12 was found to
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peak at sLNv terminals at midmorning (ZT3), 10 a time never sug-

gested to be particularly important for sLNv neuron function de-

spite extensive studies of these neurons. However, this timing re-

sult might reflect that the exogenous FAP-based indicator does 

not accurately quantify the exocytosis of native DCVs, which in 

sLNv terminals contain the neuropeptides PDF and sNPF. There-

fore, we set out to measure endogenous neuropeptide release by 

sLNv terminals based on two recent developments. First, PDF 

and sNPF were found to be co-packaged together in the same in-

dividual DCVs in sLNv neurons. 3 This implies that assaying re-

lease of either neuropeptide would be sufficient to test if exocy-

tosis timing matched native neuropeptide release. Second, 

while no sensor for PDF is available, a GPCR-activation-based 

sensor for detecting sNPF (GRAB sNPF1.0 ) was developed. 13 

Therefore, GRAB sNPF1.0 expression was driven with PDF-GAL4, 

and sLNv neuron terminals, where neuropeptide-containing 

DCVs traffic to undergo exocytosis, were imaged for evidence 

of native neuropeptide release in brain explants.

Native synaptic neuropeptide release by sLNv neurons 

occurs at midmorning

Validation experiments included demonstrating dose-depend-

ent responses to Drosophila sNPF2 (Figure 1A). We then tested 

for a daily rhythm in GRAB sNPF1.0 signals at sLNv terminals. 

These experiments showed that the peak sNPF signal occurs 

at ZT3 (Figure 1B), which coincides with DCV exocytosis meas-

ured previously. 10 The sNPF peak cannot be attributed to a 

change in sensor expression because F max values do not change 

between ZT23 and ZT3 (Figure 1C). Furthermore, selective 

knockdown of sNPF expression in sLNv neurons by RNA inter-

ference (RNAi) reduced GRAB sNPF1.0 fluorescence at ZT3 

(Figure 1D). Thus, daily peaks in sNPF sensor fluorescence are 

the result of neuropeptide release from sLNv neurons rather 

than other sNPF-expressing neurons in the brain (Figure 1D). 

Also, application of 100 μM Cd 2+ , which blocks voltage-gated 

Ca 2+ channels, inhibited the release peak at ZT3 (Figure 1E). 

Therefore, Ca 2+ influx is required for daily synaptic neuropeptide 

release. Finally, consistent with the control of synaptic neuro-

peptide content by the circadian clock, 14 the elevated sNPF sen-

sor signal at ZT3 was lost in the per 01 clock gene amorphic mu-

tant (Figure 1F). Together, the above experiments show that 

Ca 2+ influx-evoked endogenous neuropeptide release by sLNv 

terminals is triggered by the clock at midmorning.

Different Ca 2+ rhythms in the sLNv soma and terminals 

Because the shared midmorning timing of native neuropeptide 

release (Figure 1) and DCV exocytosis 10 was not predicted 

from elevations in soma Ca 2+ and membrane potential, 5–8 we 

measured Ca 2+ in terminals where synaptic neuropeptide re-

lease occurs with cytoplasmic GCaMP8f (GC) or synaptotag-

min-fused mScarlet3-tagged GCaMP8f (ssGC), which enables 

ratiometric measurements. With either version of the Ca 2+ indi-

cator, it was possible to monitor Ca 2+ changes at ∼20 Hz by lim-

iting imaging to the single channel for GCaMP8f (i.e., without 

changing excitation and emission) at one plane of focus. In the 

morning, this high-speed imaging of bouton-sized regions of in-

terest (ROIs) in sLNv terminals expressing either GCaMP8f ver-

sion revealed spontaneous presynaptic Ca 2+ spikes that display 

a rapid rise and subsequent slower decay (Figures 2Ai, 2Aii, and

2Bi), which is expected for presynaptic responses to APs. 15,16 

Also consistent with activity responses, inhibiting Ca 2+ influx 

with Cd 2+ application blocked presynaptic Ca 2+ spike activity 

within 5 min in every experiment (Figures 2Aii–2Av; N = 12). Inter-

estingly, even with a limited field of view, Ca 2+ signals from re-

gions likely to represent boutons were not always synchronized. 

For example, in an experiment conducted at ZT3, four patterns of 

activity were evident among 14 ROIs (Figure S1). This lack of 

synchrony implies that the four sLNv neurons in each hemibrain 

are not electrically coupled. Finally, we determined the daily tim-

ing of spontaneous Ca 2+ spike activity with high-speed imaging 

of ssGC. Strikingly, the frequency of activity varies across the 

day with a peak of 1.8 ± 0.2 Hz at ZT3 (Figure 2B), at which point 

all ROIs were active (e.g., Figure S1). Although different behavior 

from a subset of boutons not viewed in our experiments cannot 

be excluded without imaging all synaptic sites simultaneously, 

the detected timing is striking because it corresponds with 

peak synaptic neuropeptide release (Figure 1B) and DCV 

exocytosis. 10

The phase disparity between presynaptic Ca 2+ reported here 

compared with soma Ca 2+ reported previously 6–8 could result 

from different experimental conditions or be the result of an un-

expected disconnect between Ca 2+ in the soma and terminals. 

To distinguish between these possibilities, soma Ca 2+ was 

measured by ratiometric imaging of ssGC. Measurements in 

our preparations showed that soma Ca 2+ peaks at ZT23 and 

drops during the morning (Figure 3A), in agreement with prior re-

ports. 6–8 Therefore, experimental conditions do not explain the 

soma-terminal Ca 2+ disparity, and peak Ca 2+ firing frequency 

in terminals surprisingly occurs while soma Ca 2+ is dropping. 

The disparate Ca 2+ timing in the soma and terminals reflects 

different mechanisms operating in the two neuronal compart-

ments. First, while terminal Ca 2+ spikes and neuropeptide re-

lease depend on Ca 2+ influx (Figures 1 and 2), elevated soma 

Ca 2+ at ZT23 measured by ratiometric ssGC imaging persists 

when Ca 2+ influx is blocked with Cd 2+ for 20 min (Figure 3B), in-

dicating that the somatic Ca 2+ increase does not require Ca 2+ in-

flux, while terminal Ca 2+ spikes do. Second, ∼20 Hz imaging of 

the GCaMP channel of GC in a single plane of focus showed 

sLNv somas did not produce Ca 2+ spikes at either ZT23 (N = 8 

somas from 4 hemibrains) when soma Ca 2+ is elevated or ZT 3 

(N = 18 somas from 9 hemibrains) when terminal Ca 2+ spiking 

is greatest (Figures 2B and 3C). This result was also evident in 

experiments in which both compartments were studied in a sin-

gle hemibrain at ZT3 (Figures 3Ci and 3Cii; N = 4), thus verifying 

that the terminal Ca 2+ spiking is not registered in soma Ca 2+ re-

cordings. Therefore, different mechanisms, each peaking at dif-

ferent times, govern daily Ca 2+ elevations in the sLNv neuron 

soma and terminals. Together, the above data show that synap-

tic neuropeptide release by sLNv neurons is triggered by spikes 

of Ca 2+ influx at midmorning, which contrasts with the spike-free 

elevation of somatic Ca 2+ that occurs late at night and does not 

depend on Ca 2+ influx.

Peak synaptic activity depletes a large releasable 

neuropeptide pool

As synaptic neuropeptide release is limited to the peak of activ-

ity, we considered why lower frequency activity prior to the peak 

(e.g., at ZT1) did not elicit neuropeptide release (Figures 1B and
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Figure 1. Circadian rhythm of native neuropeptide release from sLNv nerve terminals

(A) (i) GRAB sNPF1.0 images in sLNv nerve terminals before (pre) and after application of exogenous 3 μM sNPF2 to the brain explant. Shown images are maximum 

z-projections from image stacks made from 8 1 μm steps. Scale bar, 10 μm. (ii) Dose-response curve for GRAB sNPF1.0 in LNv neurons in response to various 

concentrations of sNPF2. Note that responses are expressed as change relative to initial fluorescence (F 0 ). Error bars here and in subsequent panels show 

standard error of the mean (SEM).

(B) Graph represents average GRAB sNPF1.0 fluorescence from sLNv nerve terminals at different times of day (ZT) in flies entrained to a 12 h light:12 h dark cycle. 

One-way ANOVA revealed a significant difference (p < 0.0001). Post-test analysis by Dunnett’s multiple comparisons test is presented: ****p < 0.0001.

(C) The maximal GRAB sNPF1.0 response evoked by 3 μM (F max ) did not change between ZT23 and ZT3. ns, not significant.

(D) GRAB sNPF1.0 fluorescence at peak release time of day (ZT3) in the sLNv terminals of control UAS-GRAB sNPF1.0 ; PDF-GAL4 flies (CON) and UAS-sNPF RNAi/ 

UAS-GRAB sNPF1.0 ; PDF-GAL4 flies (RNAi sNPF) (t test, **p < 0.01).

(E) GRAB sNPF1.0 fluorescence at peak release time of day (ZT3) in the sLNv terminals 60 min after the application of vehicle or ∼100 μM cadmium chloride (Cd 2+ ) 

(t test, *p < 0.05).

(F) GRAB sNPF1.0 fluorescence at peak release time of day (ZT3) in the sLNv terminals in controls and per 01 flies (t test, **p < 0.01).
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2B). First, peak activity might be needed for efficient release be-

cause of the superlinear dependence of release on Ca 2+ . Alter-

natively, the lower activity prior to the peak may not evoke syn-

aptic release because recently accumulated neuropeptide that 

occurs in preparation for release 10,14 by clock-dependent 

vesicle capture 17 is in DCVs that are not yet competent for re-

lease (i.e., because they require priming). To test the latter hy-

pothesis, we bypassed the timing of native activity by inducing 

depolarization by applying high K + saline at ZT1, a time point 

when synaptic neuropeptide content has already increased, 

but daily exocytosis has not yet been initiated. 10 For these 

experiments, DCV exocytosis was measured in animals with 

cell-specific expression of Dilp2-FAP. 10 Fluorescence of this 

construct is only produced when extracellular bath-applied 

membrane-impermeant fluorogen (e.g., MG-Tcarb) passes 

through the fusion pore formed by kiss-and-run exocytosis

A
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✱✱✱

✱ ✱

✱✱

GC ssGC

iiiii
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Figure 2. Presynaptic Ca 2+ imaging in sLNv 

nerve terminals

(A) (i) Cytoplasmic GCaMP8F driven by PDF-GAL4 

in distal sLNv nerve terminals imaged over time at 

ZT1. Scale bar, 5 μm. (ii) Example trace of 

GCaMP8F fluorescence data from the ROI shown 

in (i) measured at ∼20 Hz in normal HL3 saline 

prior to adding ∼100 μM cadmium chloride (Cd 2+ ).

(iii) Example trace represents GCaMP8F fluo-

rescence from one ROI after adding Cd 2+ from the 

same ROI shown in (i). (iv) Morning (ZT1–5) activity 

frequency of sLNv nerve terminals expressing 

GCaMP8F before and after Cd 2+ (∼100 μM). Error 

bars here and in subsequent panels show SEM. (v) 

Morning (ZT1–5) activity frequency of sLNv nerve 

terminals expressing Syt-mScarlet3-GCaMP8F 

(ssGC) before and after Cd 2+ (∼100 μM). Note 

that ZTs were not matched between iv and v.

(B) (i) Syt-mScarlet3-GCaMP8F example traces in 

distal sLNv nerve terminals imaged over time at 

ZT21, 1, and 3. The bar indicates 3 s. (ii) Average 

Ca 2+ transient frequencies measured in sLNv 

nerve terminals at different times of day using Syt-

mScarlet3-GCaMP8F. One-way ANOVA revealed 

a significant difference (p < 0.0001). Post-test 

analysis by Dunnett’s multiple comparisons test is 

presented: ***p < 0.001, **p < 0.01, *p < 0.05. 

See also Figure S1.

(the predominant mechanism of synaptic 

neuropeptide release) to bind the fluoro-

gen-activating protein (FAP) inside of 

the DCV. 12,18

Strikingly, DCV exocytosis in response 

to depolarization is robust at ZT1

(Figure 4, Hi K + ). Furthermore, the exocy-

tosis evoked by depolarization at ZT1 is 

comparable to peak endogenous exocy-

tosis at ZT3, 10 suggesting endogenous 

daily release depletes the releasable 

pool in terminals. To relate release to 

the total presynaptic pool, a membrane-

permeant version of the fluorogen 

(MGnBu 19 ) was applied to label presy-

naptic Dilp2-FAP in all DCVs. This 

showed that the releasable pool is about half of the total neuro-

peptide pool in terminals (Figure 4, MGnBu). Thus, at ZT1 there is 

a large pool of release-competent DCVs in sLNv terminals. 

Therefore, the clock-dependent timing of release is not due to 

a change in vesicle release competence but instead reflects 

the frequency requirement for robust synaptic neuropeptide 

release and the timing of activity-dependent Ca 2+ influx that 

occurs in terminals but not the sLNv soma.

Conclusions

The first conclusion derived from this study is that soma Ca 2+ 

recordings, which are often used to infer the timing of neuronal 

activity, do not always reflect the timing of activity and neuro-

transmission. For sLNv clock neurons, daily Ca 2+ elevations 

in the soma occur without Ca 2+ influx many hours before 

presynaptic Ca 2+ influx-dependent activity and neuropeptide
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release at terminals. We suggest two reasons for the uncou-

pling of Ca 2+ between the soma and terminals. First, APs in 

the sLNv soma occur at a low frequency (≤2 Hz) and are small 

(<20 mV), 5.9 reflecting passive backpropagation from the axon 

initial segment (i.e., where APs initiate), so that they do not ef-

ficiently open voltage-gated Ca 2+ channels. Second, IP 3 -IP3R 

signaling, which releases lumenal Ca 2+ from the endoplasmic 

reticulum to elevate cytoplasmic Ca 2+ without relying on ex-

tracellular Ca 2+ influx, is active in sLNv somas at ZT 23. 10 

Therefore, the timing of soma Ca 2+ need not be correlated 

with activity-dependent peptidergic transmission by sLNv ter-

minals. Uncoupling between the compartments allows Ca 2+ 

to be elevated at a different time in the soma to evoke AP-inde-

pendent effects such as local DCV exocytosis 10 and potentially 

gene expression. Importantly, these results show circuit activity

Figure 3. Somatic Ca 2+ regulation in sLNv 

neurons

(A) (i) ssGC fluorescence images showing the 

mScarlet and GCaMP8f signals in sLNv somas at 

ZT23 and ZT8. Scale bar, 5 μm. (ii) GCaMP8f/ 

mScarlet ratios were calculated (ssGC ratio) and 

graphed at ZT21, 23, 1, 3, 5, 10, and 15 to show 

soma Ca 2+ is elevated at night and subsequently 

decreases throughout the morning. Error bars 

here and in the subsequent panel show SEM. 

One-way ANOVA revealed a significant difference 

(p < 0.0001). Post-test analysis by Dunnett’s 

multiple comparisons test is presented: **p < 0.01, 

***p < 0.001, ****p < 0.0001.

(B) Addition of ∼100 μM CdCl 2 for 20 min at ZT23 

had no effect on the soma ssGC ratio, revealing 

the elevated Ca 2+ levels at this time were not the 

result of Ca 2+ influx.

(C) At ZT 3, when terminals display maximal Ca 2+ 

spike frequency, somatic recordings revealed no 

Ca 2+ spikes (18 sLNv somas from 9 hemibrains). (i) 

Cytoplasmic GCaMP8f in sLNv somas reveals no 

activity, (ii) while sLNv terminals in the same 

hemibrain revealed Ca 2+ spike activity (repeated in 

4 brains). (iii) At ZT23, no firing was observed in 

sLNv somas (8 sLNv somas from 4 hemibrains).

cannot be deduced from soma Ca 2+ 

imaging with certainty. Thus, circuit 

models that were formulated based 

solely on soma Ca 2+ imaging should be 

re-evaluated, taking into account the po-

tential for uncoupling between the soma 

and terminals, which was demonstrated 

here with a clock neuron. 

The second major finding of this study is 

that clock- and activity-dependent native 

neuropeptide release from sLNv synapses 

occurs at midmorning. Therefore, synap-

tic sNPF release occurs >9 h before night-

time sleep, which is promoted by sNPF 

from sLNv neurons. 2 Also, because syn-

aptic PDF is co-packaged with sNPF, 3 

the rhythmic synaptic release of PDF likely 

occurs far in advance of PDF-dependent 

morning behaviors. The basis for the delay between PDF release 

and behavior remains to be determined because, while clock cir-

cuit connectivity mediated by classical synapses with active 

zones and small synaptic vesicles has been mapped out, the pep-

tidergic connectome is the subject of speculation based on ex-

pression of neuropeptides and receptors without many demon-

strated functional interactions. 20,21 We suggest that a delay 

between neuropeptide release and behavior might reflect in part 

the time for induced gene expression effects on evening clock 

neurons and other targets. 1,4,22–24 Further downstream communi-

cation, also potentially involving neuropeptides, might compound 

these delays. While delineating the function of the clock circuit 

without relying on soma Ca 2+ recordings presents a new chal-

lenge, midmorning clock-dependent neuropeptide release by 

sLNv terminals can now serve as a reference point for clock circuit
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function and the aspects of circadian behavior being regulated by 

events occurring in the dorsal protocerebrum.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Adult Drosophila were entrained for at least for 72 hours in a 12-hour light: 12-hour dark (LD) schedule before dissection of 4 to 9 day-

old males to generate brain explants. Flies were obtained as described in the key resources table.

METHOD DETAILS

Physiology

Dissections during the dark phase were performed under a red light. Adult flies were immobilized with CO 2 gas and brains were dis-

sected in 0 Ca 2+ HL3 saline solution (70 mM NaCl, 5 mM KCl, 20 mM MgCl 2 *6H 2 O, 115 mM Sucrose, 5 mM Trehalose, 5 mM Hepes, 

and 10 mM NaHCO 3 , pH 7.3) and then put into polylysine-coated plastic dishes containing HL3 with 2 mM Ca 2+ for imaging. 25 High 

potassium (Hi K + ) saline was used to elicit neuropeptide release (2 mM CaCl 2 , 35 mM NaCl, 80 mM KCl, 4 mM MgCl 2 *6H 2 O, 65 mM 

Sucrose, 5 mM Trehalose, 5 mM Hepes, and 10 mM NaHCO 3 , pH 7.3).

All imaging was done on setups with upright Olympus microscopes equipped with a 60× 1.1 NA dipping water immersion objec-

tive, a Yokogawa spinning disk confocal head, lasers (i.e., 488 nm laser for GFP illumination, a 561 nm laser for mScarlet3 detection, a 

640 nm laser for FAP imaging), and a Teledyne Photometrics sCMOS camera.

Two fluorescent probes were expressed using the PDF-GAL4 driver to image neuropeptide release from sLNv terminals is the dor-

sal protocerebrum. The first was the sNPF sensor, GRAB sNPF1.0 , 
13 and the other was Dilp2-FAP, 12 which detects DCV fusion pore 

opening events. UAS-GRAB sNPF1.0 expression in sLNv terminals was used to detect both sNPF endogenous release and application 

of exogenous sNPF2 (WFGDVNQKPIRSPSLRLRFamide) (GenScript Life Science). FAP imaging experiments were performed as pre-

viously described. 6 In the current experiments, a recombinant with UAS-Dilp2-GFP 18 and UAS-Dilp2-FAP was used so that GFP 

could be used for focusing before application of the fluorogens MG-Tcarb (membrane impermeant) or MGnBu (membrane perme-

ant). 19 Ca 2+ was imaged with UAS-GCaMP8f (GC) or UAS-syt-mScarlet3-GCaMP8f (ssGC) driven by PDF-GAL4. For resolving Ca 2+ 

spikes, green channel data were acquired from a single plane of focus at ∼20 Hz. ssGC ratios were recorded at 2 Hz with 100 ms 

exposures based on alternating between GFP and red optics (i.e., switching between excitation lasers for GCaMP (488 nm) and 

mScarlet (561 nm) while concurrently changing emission filters with a filter wheel). FAP imaging used Cy5 far red optics (640 nm ex-

citation). Quantification of fluorescence was done in Imagej or Fiji. Statistical analysis (e.g., tests and calculation of standard error of 

the mean (SEM) for error bars) was performed with Graphpad Prism software.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

sNPF2 GenScript Life Science WFGDVNQKPIRSPSLRLRFamide

MG-Tcarb CMU, Dept. Chem. bschmidt@andrew.cmu.edu

MGnBu CMU, Dept. Chem. bschmidt@andrew.cmu.edu

Experimental models: Organisms/strains

D. melanogaster: PDF-GAL4 Paul Taghert N/A

D. melanogaster: UAS-Dilp2-GFP Edwin Levitan N/A

D. melanogaster: UAS-Dilp2-FAP Edwin Levitan N/A

D. melanogaster: UAS- GRAB sNPF1.0 Yulong Li BDSC #606553

D. melanogaster: UAS-synaptotagmin::mScarlet3::GCaMP8f Dion Dickman (USC) N/A

D. melanogaster: UAS-GCaMP8f BDSC: # 92587

D. melanogaster: w 1118 Zachary Freyberg freyberg@pitt.edu

D. melanogaster: UAS-sNPF RNAi (III) Leslie Griffith # 15149

D. melanogaster: per 01 BDSC # 80917

Software and algorithms

Image J Schneider et al. 7 https://imagej.net/ij/

Prism 10 Graphpad RRID: SCR_002798
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Fly lines

All flies used the PDF-GAL4 promoter on the third chromosome (provided by Paul Taghert, Washington University in St. Louis). PDF-

GAL4 drives expression in the two subsets of clock neuron that express PDF neuropeptide, the small ventrolateral (sLNv) neurons 

and the large ventrolateral (lLNv) neurons, of which only the sLNv neurons express sNPF. UAS-Dilp2-GFP, UAS-Dilp2-FAP, UAS-

GRAB sNPF1.0 and UAS-synaptotagmin-mScarlet3-GCaMP8f flies, with the latter coming from Dion Dickman (University of Southern 

California), were reported previously. 12,13,16,26 w 1118 flies were from Zachary Freyberg (University of Pittsburgh), while UAS-sNPF 

RNAi (III) flies were from Leslie Griffith (Brandies University). Lines from the Bloomington Drosophila stock center included Bl# 

92857 (UAS-GCaMP8f) and Bl# 80917 (per 01 ).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Prism (GraphPad). Bar graphs show means with standard error of the mean indicated by 

error bars. As indicated in the figure legends, pair-wise comparisons were based on t-tests, while comparisons of multiple experi-

mental groups were based on one-way ANOVA followed by Tukey’s or Dunnett’s multiple comparisons post-tests. Statistical signifi-

cance was indicated when two-tail p values were ≤ 0.05.
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